995 resultados para Bulk carrier cargo ships
Resumo:
This article describes a Matlab toolbox for parametric identification of fluid-memory models associated with the radiation forces ships and offshore structures. Radiation forces are a key component of force-to-motion models used in simulators, motion control designs, and also for initial performance evaluation of wave-energy converters. The software described provides tools for preparing non-parmatric data and for identification with automatic model-order detection. The identification problem is considered in the frequency domain.
Resumo:
This study presents a general approach to identify dominant oscillation modes in bulk power system by using wide-area measurement system. To automatically identify the dominant modes without artificial participation, spectral characteristic of power system oscillation mode is applied to distinguish electromechanical oscillation modes which are calculated by stochastic subspace method, and a proposed mode matching pursuit is adopted to discriminate the dominant modes from the trivial modes, then stepwise-refinement scheme is developed to remove outliers of the dominant modes and the highly accurate dominant modes of identification are obtained. The method is implemented on the dominant modes of China Southern Power Grid which is one of the largest AC/DC paralleling grids in the world. Simulation data and field-measurement data are used to demonstrate high accuracy and better robustness of the dominant modes identification approach.
Resumo:
In this letter, the velocity distributions of charge carriers in high-mobility polymer thin-film transistors (TFTs) with a diketopyrrolopyrrole- naphthalene copolymer (PDPP-TNT) semiconductor active layer are reported. The velocity distributions are found to be strongly dependent on measurement temperatures as well as annealing conditions. Considerable inhomogeneity is evident at low measurement temperatures and for low annealing temperatures. Such transient transport measurements can provide additional information about charge carrier transport in TFTs which are unavailable using steady-state transport measurements.
Resumo:
We report charge-carrier velocity distributions in high-mobility polymer thin-film transistors (PTFTs) employing a dual-gate configuration. Our time-domain measurements of dual-gate PTFTs indicate higher effective mobility as well as fewer low-velocity carriers than in single-gate operation. Such nonquasi-static (NQS) measurements support and clarify the previously reported results of improved device performance in dual-gate devices by various groups. We believe that this letter demonstrates the utility of NQS measurements in studying charge-carrier transport in dual-gate thin-film transistors.
Resumo:
Diketopyrrolopyrrole (DPP)-based organic semiconductors EH-DPP-TFP and EH-DPP-TFPV with branched ethyl-hexyl solubilizing alkyl chains and end capped with trifluoromethyl phenyl groups were designed and synthesized via Suzuki coupling. These compounds show intense absorptions up to 700 nm, and thin film-forming characteristics that sensitively depend on the solvent and coating conditions. Both materials have been used as electron donors in bulk heterojunction and bilayer organic photovoltaic (OPV) devices with fullerenes as acceptors and their performance has been studied in detail. The best power conversion efficiency of 3.3% under AM1.5G illumination (100 mW cm -2) was achieved for bilayer solar cells when EH-DPP-TFPV was used with C 60, after a thermal annealing step to induce dye aggregation and interdiffusion of C 60 with the donor material. To date, this is one of the highest efficiencies reported for simple bilayer OPV devices.
Resumo:
The one-step preparation of highly anisotropic polymer semiconductor thin films directly from solution is demonstrated. The conjugated polymer poly(3-hexylthiophene) (P3HT) as well as P3HT:fullerene bulk-heterojunction blends can be spin-coated from a mixture of the crystallizable solvent 1,3,5-trichlorobenzene (TCB) and a second carrier solvent such as chlorobenzene. Solidification is initiated by growth of macroscopic TCB spherulites followed by epitaxial crystallization of P3HT on TCB crystals. Subsequent sublimation of TCB leaves behind a replica of the original TCB spherulites. Thus, highly ordered thin films are obtained, which feature square-centimeter-sized domains that are composed of one spherulite-like structure each. A combination of optical microscopy and polarized photoluminescence spectroscopy reveals radial alignment of the polymer backbone in case of P3HT, whereas P3HT:fullerene blends display a tangential orientation with respect to the center of spherulite-like structures. Moreover, grazing-incidence wide-angle X-ray scattering reveals an increased relative degree of crystallinity and predominantly flat-on conformation of P3HT crystallites in the blend. The use of other processing methods such as dip-coating is also feasible and offers uniaxial orientation of the macromolecule. Finally, the applicability of this method to a variety of other semi-crystalline conjugated polymer systems is established. Those include other poly(3-alkylthiophene)s, two polyfluorenes, the low band-gap polymer PCPDTBT, a diketopyrrolopyrrole (DPP) small molecule as well as a number of polymer:fullerene and polymer:polymer blends. Macroscopic spherulite-like structures of the conjugated polymer poly(3-hexylthiophene) (P3HT) grow directly during spin-coating. This is achieved by processing P3HT or P3HT:fullerene bulk heterojunction blends from a mixture of the crystallizable solvent 1,3,5-trichlorobenzene and a second carrier solvent such as chlorobenzene. Epitaxial growth of the polymer on solidified solvent crystals gives rise to circular-symmetric, spherulite-like structures that feature a high degree of anisotropy.
Resumo:
We investigate the blend morphology and performance of bulk heterojunction organic photovoltaic devices comprising the donor polymer, pDPP-TNT (poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1, 4-dione-alt-naphthalene}) and the fullerene acceptor, [70]PCBM ([6,6]-phenyl C71-butyric acid methyl ester). The blend morphology is heavily dependent upon the solvent system used in the fabrication of thin films. Thin films spin-coated from chloroform possess a cobblestone-like morphology, consisting of thick, round-shaped [70]PCBM-rich mounds separated by thin polymer-rich valleys. The size of the [70]PCBM domains is found to depend on the overall film thickness. Thin films spin-coated from a chloroform:dichlorobenzene mixed solvent system are smooth and consist of a network of pDPP-TNT nanofibers embedded in a [70]PCBM-rich matrix. Rinsing the films in hexane selectively removes [70]PCBM and allows for analysis of domain size and purity. It also provides a means for investigating exciton dissociation efficiency through relative photoluminescence yield measurements. Devices fabricated from chloroform solutions show much poorer performance than the devices fabricated from the mixed solvent system; this disparity in performance is seen to be more pronounced with increasing film thickness. The primary cause for the improved performance of devices fabricated from mixed solvents is attributed to the greater donor-acceptor interfacial area and resulting greater capacity for charge carrier generation.
Resumo:
Bulk heterojunction organic solar cells based on poly[4,7-bis(3- dodecylthiophene-2-yl) benzothiadiazole-co-benzothiadiazole] and [6,6]-phenyl C71-butyric acid methyl ester are investigated. A prominent kink is observed in the fourth quadrant of the current density-voltage (J-V) response. Annealing the active layer prior to cathode deposition eliminates the kink. The kink is attributed to an extraction barrier. The J-V response in these devices is well described by a power law. This behavior is attributed to an imbalance in charge carrier mobility. An expected photocurrent for the device displaying a kink in the J-V response is determined by fitting to a power law. The difference between the expected and measured photocurrent allows for the determination of a voltage drop within the device. Under simulated 1 sun irradiance, the peak voltage drop and contact resistance at short circuit are 0.14 V and 90 Ω, respectively. © 2012 American Institute of Physics.
Resumo:
This paper details the implementation and trialling of a prototype in-bucket bulk density monitor on a production dragline. Bulk density information can provide feedback to mine planning and scheduling to improve blasting and consequently facilitating optimal bucket sizing. The bulk density measurement builds upon outcomes presented in the AMTC2009 paper titled ‘Automatic In-Bucket Volume Estimation for Dragline Operations’ and utilises payload information from a commercial dragline monitor. While the previous paper explains the algorithms and theoretical basis for the system design and scaled model testing this paper will focus on the full scale implementation and the challenges involved.
Resumo:
The main purpose of the rudder in ships is course keeping. However, the rudder can also be used, in some cases, to reject undesirable wave produced rolling motions. From a fundamental point of view, the main issues associated with this problem are the presence of a nonminimum phase zero and the single input two output nature of the system. In this paper, the limitations imposed on the achievable closed loop performance due to these issues are analyzed. This gives a deeper understanding of the problem and leads to conclusions regarding the inherent design trade-offs which hold regardless of the control strategy used.
Resumo:
This research measured particle and gaseous emissions from ships and trains operating within the Port of Brisbane, and explored their influence on ambient air composition at a downwind suburban measurement site. The ship and train emission factor investigations resulted in the development of novel measurement techniques which permit the quantification of particle and gaseous emission factors using samples collected from post-emission exhaust plumes. The urban influence investigation phase of the project produced a new approach to identifying influences from ship emissions.
Resumo:
Particulates with specific sizes and characteristics can induce potent immune responses by promoting antigen uptake of appropriate immuno-stimulatory cell types. Magnetite (Fe3O4) nanoparticles have shown many potential bioapplications due to their biocompatibility and special characteristics. Here, superparamagnetic Fe3O4 nanoparticles (SPIONs) with high magnetization value (70emug-1) were stabilized with trisodium citrate and successfully conjugated with a model antigen (ovalbumin, OVA) via N,N'-carbonyldiimidazole (CDI) mediated reaction, to achieve a maximum conjugation capacity at approximately 13μgμm-2. It was shown that different mechanisms governed the interactions between the OVA molecules and magnetite nanoparticles at different pH conditions. We evaluated as-synthesized SPION against commercially available magnetite nanoparticles. The cytotoxicity of these nanoparticles was investigated using mammalian cells. The reported CDI-mediated reaction can be considered as a potential approach in conjugating biomolecules onto magnetite or other biodegradable nanoparticles for vaccine delivery.
Resumo:
The technique of photo-CELIV (charge extraction by linearly increasing voltage) is one of the more straightforward and popular approaches to measure the faster carrier mobility in measurement geometries that are relevant for operational solar cells and other optoelectronic devices. It has been used to demonstrate a time-dependent photocarrier mobility in pristine polymers, attributed to energetic relaxation within the density of states. Conversely, in solar cell blends, the presence or absence of such energetic relaxation on transport timescales remains under debate. We developed a complete numerical model and performed photo-CELIV experiments on the model high efficiency organic solar cell blend poly[3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-naphthalene] (PDPP-TNT):[6,6]-phenyl-C71-butyric-acid-methyl-ester (PC70BM). In the studied solar cells a constant, time-independent mobility on the scale relevant to charge extraction was observed, where thermalisation of photocarriers occurs on time scales much shorter than the transit time. Therefore, photocarrier relaxation effects are insignificant for charge transport in these efficient photovoltaic devices.
Resumo:
Hot metal carriers (HMCs) are large forklift-type vehicles used to move molten metal in aluminum smelters. This paper reports on field experiments that demonstrate that HMCs can operate autonomously and in particular can use vision as a primary sensor to locate the load of aluminum. We present our complete system but focus on the vision system elements and also detail experiments demonstrating reliable operation of the materials handling task. Two key experiments are described, lasting 2 and 5 h, in which the HMC traveled 15 km in total and handled the load 80 times.