839 resultados para Building Design
Resumo:
The paper is an investigation of the exchange of ideas and information between an architect and building users in the early stages of the building design process before the design brief or any drawings have been produced. The purpose of the research is to gain insight into the type of information users exchange with architects in early design conversations and to better understand the influence the format of design interactions and interactional behaviours have on the exchange of information. We report an empirical study of pre-briefing conversations in which the overwhelming majority of the exchanges were about the functional or structural attributes of space, discussion that touched on the phenomenological, perceptual and the symbolic meanings of space were rare. We explore the contextual features of meetings and the conversational strategies taken by the architect to prompt the users for information and the influence these had on the information provided. Recommendations are made on the format and structure of pre-briefing conversations and on designers' strategies for raising the level of information provided by the user beyond the functional or structural attributes of space.
Resumo:
This paper introduces an international collaboration of EU and Asia in education, training and research in the field of sustainable built environment, which attempts to develop a network of practical and intellectual knowledge and training exchange between Chinese and European Universities in the field of sustainable building design and construction. The projects funded by the European Commission Asia Link program, UK Foreign & Commonwealth Office, British Council and the UK Engineering Physical Sciences Council (EPSRC) have been introduced. The projects have significant impacts on promoting sustainable development in built environment in China. The aim of this paper is to share the experiences with those who are interested and searching the ways to collaborate with China in education and research.
Resumo:
This paper considers the relationship between value management and facilities management. The findings are particularly relevant to large client organisations which procure new buildings on a regular basis. It is argued that the maximum effectiveness of value management can only be achieved if it is used in conjunction with an ongoing commitment to post-occupancy evaluation. SMART value management is seen to provide the means of ensuring that an individual building design is in alignment with the client’s strategic property needs. However, it is also necessary to recognise that an organisation’s strategic property needs will continually be in a state of change. Consequentially, economic and functional under-performance can only be avoided by a regular performance audit of existing property stock in accordance with changing requirements. Such a policy will ensure ongoing competitiveness through organisational learning. While post-occupancy evaluation represents an obvious additional service to be provided by value management consultants, it is vital that the necessary additional skills are acquired. Process management skills and social science research techniques are clearly important. However, there is also a need to improve mechanisms for data manipulation. Success can only be achieved if equal attention is given to issues of process, structure and content.
Resumo:
Global temperatures are expected to rise by between 1.1 and 6.4oC this century, depending, to a large extent, on the amount of carbon we emit to the atmosphere from now onwards. This warming is expected to have very negative effects on many peoples and ecosystems and, therefore, minimising our carbon emissions is a priority. Buildings are estimated to be responsible for around 50% of carbon emissions in the UK. Potential reductions involve both operational emissions, produced during use, and embodied emissions, produced during manufacture of materials and components, and during construction, refurbishments and demolition. To date the major effort has focused on reducing the, apparently, larger operational element, which is more readily quantifiable and reduction measures are relatively straightforward to identify and implement. Various studies have compared the magnitude of embodied and operational emissions, but have shown considerable variation in the relative values. This illustrates the difficulties in quantifying embodied, as it requires a detailed knowledge of the processes involved in the different life cycle phases, and requires the use of consistent system boundaries. However, other studies have established the interaction between operational and embodied, which demonstrates the importance of considering both elements together in order to maximise potential reductions. This is borne out in statements from both the Intergovernmental Panel on Climate Change and The Low Carbon Construction Innovation and Growth Team of the UK Government. In terms of meeting the 2020 and 2050 timeframes for carbon reductions it appears to be equally, if not more, important to consider early embodied carbon reductions, rather than just future operational reductions. Future decarbonisation of energy supply and more efficient lighting and M&E equipment installed in future refits is likely to significantly reduce operational emissions, lending further weight to this argument. A method of discounting to evaluate the present value of future carbon emissions would allow more realistic comparisons to be made on the relative importance of the embodied and operational elements. This paper describes the results of case studies on carbon emissions over the whole lifecycle of three buildings in the UK, compares four available software packages for determining embodied carbon and suggests a method of carbon discounting to obtain present values for future emissions. These form the initial stages of a research project aimed at producing information on embodied carbon for different types of building, components and forms of construction, in a simplified form, which can be readily used by building designers in optimising building design in terms of minimising overall carbon emissions. Keywords: Embodied carbon; carbon emission; building; operational carbon.
Resumo:
Natural-ventilation potential (NVP) value can provide the designers significant information to properly design and arrange natural ventilation strategy at the preliminary or conceptual stage of ventilation and building design. Based on the previous study by Yang et al. [Investigation potential of natural driving forces for ventilation in four major cities in China. Building and Environment 2005;40:739–46], we developed a revised model to estimate the potential for natural ventilation considering both thermal comfort and IAQ issues for buildings in China. It differs from the previous one by Yang et al. in two predominant aspects: (1) indoor air temperature varies synchronously with the outdoor air temperature rather than staying at a constant value as assumed by Yang et al. This would recover the real characteristic of natural ventilation, (2) thermal comfort evaluation index is integrated into the model and thus the NVP can be more reasonably predicted. By adopting the same input parameters, the NVP values are obtained and compared with the early work of Yang et al. for a single building in four representative cities which are located in different climates, i.e., Urumqi in severe cold regions, Beijing in cold regions, Shanghai in hot summer and cold winter regions and Guangzhou in hot summer and warm winter regions of China. Our outcome shows that Guangzhou has the highest and best yearly natural-ventilation potential, followed by Shanghai, Beijing and Urumqi, which is quite distinct from that of Yang et al. From the analysis, it is clear that our model evaluates the NVP values more consistently with the outdoor climate data and thus reveals the true value of NVP.
Resumo:
Designing for indoor thermal environmental conditions is one of the key elements in the energy efficient building design process. This paper introduces a development of the Chinese national Evaluation Standard for indoor thermal environments (Evaluation Standard). International standards including the ASHRAE55, ISO7730, DIN EN, and CIBSE Guide-A have been reviewed and referenced for the development of the Evaluation Standard. In addition, over 28,000 subjects participated in the field study from different climate zones in China and over 500 subjects have been involved in laboratory studies. The research findings reveal that there is a need to update the Chinese thermal comfort standard based on local climates and people's habitats. This paper introduces in detail the requirements for the thermal environment for heated and cooled buildings and free-running buildings in China.
Resumo:
Background: British government policy for older people focuses on a vision of active ageing and independent living. In the face of diminishing personal capacities, the use of appropriate home-based technology (HBT) devices could potentially meet a wide range of needs and consequently improve many aspects of older people's quality of life such as physical health, psychosocial well-being, social relationships, and their physical or living environment. This study aimed to examine the use of HBT devices and the correlation between use of such devices and quality of life among older people living in extra-care housing (ECH). Methods: A structured questionnaire was administered for this study. Using purposive sampling 160 older people living in extra-care housing schemes were selected from 23 schemes in England. A face-to-face interview was conducted in each participant's living unit. In order to measure quality of life, the SEIQoL-Adapted and CASP-19 were used. Results: Although most basic appliances and emergency call systems were used in the living units, communally provided facilities such as personal computers, washing machines, and assisted bathing equipment in the schemes were not well utilised. Multiple regression analysis adjusted for confounders including age, sex, marital status, living arrangement and mobility use indicated a coefficient of 1.17 with 95% CI (0.05, 2.29) and p = 0.04 [SEIQoL-Adapted] and 2.83 with 95% CI (1.17, 4.50) and p = 0.001 [CASP-19]. Conclusions: The findings of the present study will be value to those who are developing new form of specialised housing for older people with functional limitations and, in particular, guiding investments in technological aids. The results of the present study also indicate that the home is an essential site for developing residential technologies.
Resumo:
Com caráter informativo, inicia-se apresentando a relação entre a climatologia e o ambiente construído, em seus campos especificos de aplicação (urbanismo, projeto de edificações, execução de obras, e manutenção e uso das construções), considerando-se os aspectos históricos, econômico-ecológicos e os ligados à súde e ao conforto do usuário, abrangidos por tal relação. A importância da disponibilidade de informações climatológicas é então comentada, bem como diversas metodalagias de análise e representação de dados climáticos. Com caráter aplicativo, apresenta-se uma contribuigão à caracterização climática da cidade de Porto Alegre, RS. São analisadas os valores médios horários-mensais doa principais parâmetros climáticos disponíveis (temperatura, umidade, velocidade e direção do vento, e nebulosidade), propondo-se uma representação gráfica sintética alternativa para os mesmos. A análise é complementada pala execução de dois procedimentos técnicos: avaliação do conforto térmico, com identificação do período critico de verão, e projeto de dispositivo de sombreamento de aberturas retangulares. Embora esteja em foco o caso específico de Porto Alegre, tais metodologias encontram-se descritas de modo a serem aplicadas a qualquer outra localidade, procurando-se ampliar a utilidade prática do presente estudo.
Resumo:
This work aims to study and analyze strategies and measures to improve energy performance in residential and service buildings, in order to minimize energy losses and energy consumption. Due to the high energy dependence of European Union (EU), including Portugal and Slovenia, and high percentage of energy consumption in the building sector, there was a need to adopt strategies at European level with ambitious goals. This came to force EU - Member States to take measures to achieve the proposed targets for energy consumption reduction. To this end, EU - Member States have adapted the laws to their needs and formed specialized agencies and qualified experts on energy certification, which somehow evaluate buildings according to their performance. In this study, the external characteristics of the building in order to meet its thermal needs and from there to survey the existing and possible constructive solutions to be used at the envelope will be examined, in order to increase comfort and reduce the need of use technical means of air conditioning. The possibility of passive heating and ventilation systems also will be discussed. These techniques are developed in parallel with the deployment and design of the building. In this manner, to reduce the energy consumption, various techniques and technologies exploit natural resources. Thus, appear the more sustainable and efficient buildings, so-called Green Buildings have been appeared. The study ends with the identification of measures used in several buildings, proving the economic return in the medium to long term, as well as the satisfaction of their users.
Resumo:
This thesis aims to describe and demonstrate the developed concept to facilitate the use of thermal simulation tools during the building design process. Despite the impact of architectural elements on the performance of buildings, some influential decisions are frequently based solely on qualitative information. Even though such design support is adequate for most decisions, the designer will eventually have doubts concerning the performance of some design decisions. These situations will require some kind of additional knowledge to be properly approached. The concept of designerly ways of simulating focuses on the formulation and solution of design dilemmas, which are doubts about the design that cannot be fully understood nor solved without using quantitative information. The concept intends to combine the power of analysis from computer simulation tools with the capacity of synthesis from architects. Three types of simulation tools are considered: solar analysis, thermal/energy simulation and CFD. Design dilemmas are formulated and framed according to the architect s reflection process about performance aspects. Throughout the thesis, the problem is investigated in three fields: professional, technical and theoretical fields. This approach on distinct parts of the problem aimed to i) characterize different professional categories with regards to their design practice and use of tools, ii) investigate preceding researchers on the use of simulation tools and iii) draw analogies between the proposed concept, and some concepts developed or described in previous works about design theory. The proposed concept was tested in eight design dilemmas extracted from three case studies in the Netherlands. The three investigated processes are houses designed by Dutch architectural firms. Relevant information and criteria from each case study were obtained through interviews and conversations with the involved architects. The practical application, despite its success in the research context, allowed the identification of some applicability limitations of the concept, concerning the architects need to have technical knowledge and the actual evolution stage of simulation tools
Resumo:
Building design is an effective way to achieve HVAC energy consumption reduction. However, this potentiality is often neglected by architects due to the lack of references to support design decisions. This works intends to propose architectural design guidelines for energy efficiency and thermal performance of Campus/UFRN buildings. These guidelines are based on computer simulations results using the software DesignBuilder. The definition of simulation models has begun with envelope variables, partially done after a field study of thirteen buildings at UFRN/Campus. This field study indicated some basic envelope patterns that were applied in simulation models. Occupation variables were identified with temperature and energy consumption monitoring procedures and a verification of illumination and equipment power, both developed at the Campus/UFRN administration building. Three simulation models were proposed according to different design phases and decisions. The first model represents early design decisions, simulating the combination of different types of geometry with three levels of envelope thermal performance. The second model, still as a part of early design phase, analyses thermal changes between circulation halls lateral and central and office rooms, as well as the heat fluxes and monthly temperatures in each circulation hall. The third model analyses the influence of middle-design and detail design decisions on energy consumption and thermal performance. In this model, different solutions of roofs, shading devices, walls and external colors were simulated. The results of all simulation models suggest a high influence of thermal loads due to the incidence of solar radiation on windows and surfaces, which highlights the importance of window shading devices, office room orientation and absorptance of roof and walls surfaces
Resumo:
O presente trabalho procurou identificar as competências necessárias, no processo de formação profissional do Arquiteto e urbanista, durante a graduação, tendo como foco a sua atuação como coordenador do processo de Projeto de edificações. A pesquisa utilizou uma metodologia qualitativa com enfoque exploratório e descritivo, envolvendo coleta de dados através de pesquisa de opinião. Foram analisados dados como: Resoluções do MEC e CONFEA/CREA, grades curriculares das Faculdades de Arquitetura e Urbanismo da Região Metropolitana de Belém-PA e a percepção de alunos e arquitetos (docentes e profissionais liberais) através de entrevistas, tendo como principal resultado uma proposta de reformulação curricular na formação do arquiteto e urbanista, através da inclusão de conhecimentos sobre coordenação do processo de projeto de edificações, com o objetivo de atender as necessidades deste profissional no campo de trabalho. O principal resultado obtido, foi uma proposta para o desenvolvimento de competências que procura trabalhar através de conhecimentos, habilidades e atitudes relacionados aos conteúdos, experiências de aprendizagem e formas de avaliação, a melhor forma de contribuir de forma efetiva com a formação do arquiteto e urbanista, com o objetivo possibilitar que este profissional possa atuar como coordenador do processo de projeto de edificações.
Resumo:
In the United States the peak electrical use occurs during the summer. In addition, the building sector consumes a major portion of the annual electrical energy consumption. One of the main energy consuming components in the building sector is the Heating, Ventilation, and Air-Conditioning (HVAC) systems. This research studies the feasibility of implementing a solar driven underground cooling system that could contribute to reducing building cooling loads. The developed system consists of an Earth-to-Air Heat Exchanger (EAHE) coupled with a solar chimney that provides a natural cool draft to the test facility building at the Solar Energy Research Test Facility in Omaha, Nebraska. Two sets of tests have been conducted: a natural passively driven airflow test and a forced fan assisted airflow test. The resulting data of the tests has been analyzed to study the thermal performance of the implemented system. Results show that: The underground soil proved to be a good heat sink at a depth of 9.5ft, where its temperature fluctuates yearly in the range of (46.5°F-58.2°F). Furthermore, the coupled system during the natural airflow modes can provide good thermal comfort conditions that comply with ASHRAE standard 55-2004. It provided 0.63 tons of cooling, which almost covered the building design cooling load (0.8 tons, extreme condition). On the other hand, although the coupled system during the forced airflow mode could not comply with ASHRAE standard 55-2004, it provided 1.27 tons of cooling which is even more than the building load requirements. Moreover, the underground soil experienced thermal saturation during the forced airflow mode due to the oversized fan, which extracted much more airflow than the EAHE ability for heat dissipation and the underground soil for heat absorption. In conclusion, the coupled system proved to be a feasible cooling system, which could be further improved with a few design recommendations.
Resumo:
Este artigo versa sobre uma pesquisa integrante do Núcleo de Apoio à Pesquisa em Estudos de Linguagem em Arquitetura e Cidade (N.ELAC), que desenvolve pesquisas em Linguagem e Representação. Entre as diversas formas de representação em arquitetura, a presente pesquisa traz o modelo tridimensional físico como ferramenta que proporciona maior facilidade de leitura do projeto, sendo mais concreta que os desenhos técnicos. Objetiva-se, assim, destacar a importância do modelo físico como meio de aproximação da população ao patrimônio arquitetônico. Como estudo de caso, foi escolhido o Edifício E1, obra de Ernest Mange e Hélio Duarte. Localizado no campus da USP em São Carlos, é considerado patrimônio da cidade, entretanto, encontra-se praticamente enclausurado no interior do campus, dificultando maior contato da comunidade com o edifício. O projeto do edifício utilizou apenas o desenho como representação, não incluindo nenhum tipo de modelo tridimensional (físico ou digital). A partir de um levantamento das representações gráficas utilizadas pelos projetistas, foi possível fazer uma comparação entre o nível de compreensão do projeto apenas com as peças gráficas dos arquitetos e a partir do modelo físico, produzido pela pesquisadora. Foi realizado um pré-teste em escola pública municipal, despertando o interesse desses alunos pelo edifício em questão.