873 resultados para Buckling limits
Resumo:
We present a generic theory for the dynamics of a stiff filament under tension, in an active medium with orientational correlations, such as a microtubule in contractile actin. In sharp contrast to the case of a passive medium, we find the filament can stiffen, and possibly oscillate or buckle, depending on both the contractile or tensile nature of the activity and the filament-medium anchoring interaction. We also demonstrate a strong violation of the fluctuation-dissipation (FD) relation in the effective dynamics of the filament, including a negative FD ratio. Our approach is also of relevance to the dynamics of axons, and our model equations bear a remarkable formal similarity to those in recent work [Martin P, Hudspeth AJ, Juelicher F (2001) Proc Natl Acad Sci USA 98: 14380-14385] on auditory hair cells. Detailed tests of our predictions can be made by using a single filament in actomyosin extracts or bacterial suspensions.
Resumo:
An analysis and design study using Shape Memory Alloy (SMA) wire integrated beam and its buckling shape control are reported. The dynamical system performance is analyzed with a mathematical set-up involving nonlocal and rate sensitive kinetics of phase transformation in the SMA wire. A standard phenomenological constitutive model reported by Brinson (1993) is modified by considering certain consistency conditions in the material property tensors and by eliminating spurious singularity. Considering the inhomogeneity effects, a finite element model of the SMA wire is developed. Simulations are carried out to study the buckling shape control of a beam integrated with SMA wire.
Resumo:
In this work, we investigate the intrinsic limits of subthreshold slope in a dual gated bilayer graphene transistor using a coupled self-consistent Poisson-bandstructure solver. We benchmark the solver by matching the bias dependent band gap results obtained from the solver against published experimental data. We show that the intrinsic bias dependence of the electronic structure and the self-consistent electrostatics limit the subthreshold slope obtained in such a transistor well above the Boltzmann limit of 60 mV/decade at room temperature, but much below the results experimentally shown till date, indicating room for technological improvement of bilayer graphene.
Resumo:
IN this Note, a condensed version of Ref. 1, only the results are presented. The available results for buckling of clamped skew plates are few and far from complete.2'3 In the present investigation, results for several new plate configurations and loading conditions as well as more accurate results for configurations reported in previous literature are obtained.In general, for a given a/b, the critical values increase with increasing skew angle. The results also confirm the conjecture of Ref. 4 that in the case of buckling under shear (Nxv)> "two critical values exist, the positive shear (one tending to reduce the skew angle) being numerically greater than the negative shear. However, reliable values for positive shear could not be obtained in Ref. 4 because of convergence difficulties.
Resumo:
This paper presents a unified exact analysis for the statics and dynamics of a class of thick laminates. A three-dimensional, linear, small deformation theory of elasticity solution is developed for the bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. All the nine elastic constants of orthotropy are taken into account. The solution is formally exact and leads to simple infinite series for stresses and displacements in flexure, forced vibration and "beam-column" type problems and to closed form characteristic equations for free vibration and buckling problems. For free vibration of plates, the present analysis yields a triply infinite spectrum of frequencies instead of only one doubly infinite spectrum by thin plate theory or three doubly infinite spectra by Reissner-Mindlin type analyses. Some numerical results are presented for plates and laminates. Comparison of results from thin plate, Reissner and Mindlin analyses with these yield some important conclusions regarding the validity and effects of the assumptions made in the approximate theories.
Resumo:
This paper deals with the simulation-driven study of the impact of hardened steel projectiles on thin aluminium target plates using explicit finite element analysis as implemented in LS-DYNA. The evaluation of finite element modelling includes a comprehensive mesh convergence study using shell elements for representing target plates and the solid element-based representation of ogivalnosed projectiles. A user-friendly automatic contact detection algorithm is used for capturing interaction between the projectile and the target plate. It is shown that the proper choice of mesh density and strain rate-dependent material properties is crucial as these parameters significantly affect the computed residual velocity. The efficacy of correlation with experimental data is adjudged in terms of a 'correlation index' defined in the present study for which values close to unity are desirable.By simulating laboratory impact tests on thin aluminium plates carried out by earlier investigators, extremely good prediction of experimental ballistic limits has been observed with correlation indices approaching unity. Additional simulation-based parametric studies have been carried out and results consistent with test data have been obtained. The simulation procedures followed in the present study can be applied with confidence in designing thin aluminium armour plates for protection against low calibre projectiles.
Resumo:
This paper studies:(i)the long-time behaviour of the empirical distribution of age and normalized position of an age-dependent critical branching Markov process conditioned on non-extinction;and (ii) the super-process limit of a sequence of age-dependent critical branching Brownian motions.
Resumo:
Metallic glasses are of interest because of their mechanical properties. They are ductile as well as brittle. This is true of Pd77.5Cu6Si16.5, a ternary glassy alloy. Actually, the most stable metallic glasses are those which are alloys of noble or transition metals A general formula is postulated as T70–80G30-20where T stands for one or several 3d transition elements, and includes the metalloid glass formers. Another general formula is A3B to A5B where B is a metalloid. A computer method utilising the MIGAP computer program of Kaufman is used to calculate the miscibility gap over a range of temperatures. The precipitation of a secondary crystalline phase is postulated around 1500K. This could produce a dispersed phase composite with interesting high temperature-strength properties.
Resumo:
The quaternary system Sb1bTe1bBi1bSe with small amounts of suitable dopants is of interest for the manufacture of thermoelectric modules which exhibit the Peltier and Seebeck effects. This property could be useful in the production of energy from the thermoelectric effect. Other substances are bismuth telluride (Bi2Te3) and Sb1bTe1bBi and compounds such as ZnIn2Se4. In the present paper the application of computer programs such as MIGAP of Kaufman is used to indicate the stability of the ternary limits of Sb1bTe1bBi within the temperature ranges of interest, namely 273 K to 300 K.
Resumo:
Instability of laminated curved composite beams made of repeated sublaminate construction is studied using finite element method. In repeated sublaminate construction, a full laminate is obtained by repeating a basic sublaminate which has a smaller number of plies. This paper deals with the determination of optimum lay-up for buckling by ranking of such composite curved beams (which may be solid or sandwich). For this purpose, use is made of a two-noded, 16 degress of freedom curved composite beam finite element. The displacements u, v, w of the element reference axis are expressed in terms of one-dimensional first-order Hermite interpolation polynomials, and line member assumptions are invoked in formulation of the elastic stiffness matrix and geometric stiffness matrix. The nonlinear expressions for the strains, occurring in beams subjected to axial, flexural and torsional loads, are incorporated in a general instability analysis. The computer program developed has been used, after extensive checking for correctness, to obtain optimum orientation scheme of the plies in the sublaminate so as to achieve maximum buckling load for typical curved solid/sandwich composite beams.
Resumo:
This article examines the changes in interparticle forces brought about on prolonged contact (1 year period) of a bentonite clay with artificial seawater. The study is undertaken with the purpose of identifying the physico-chemical factors that impart a nonswelling character to smectite clays deposited in marine environments. Results show that equilibration of the bentonite clay with artificial seawater (total pore salinity approximately 42 gL-1) for a 1 year period does not lead to any mineralogical changes in the clay specimens; however, their exchangeable cation positions become prominently dominated by magnesium ions. The consistency limits of the seawater-equilibrated bentonite was determined on stepwise leaching to lower salinities. The predominance of diffuse double-layer repulsion forces in the pore salt concentration range of 42 gL-1 to 1.1 gL-1 caused an increase in the liquid limits of the seawater-equilibrated bentonite specimens on reducing the salinity in the corresponding range (42 gL-1 to 1.1 gL-1). The attraction forces, however, prevail over the repulsion forces at salt concentrations <1.1 gL-1 and cause a decrease in liquid limit of the clay specimens with reduction in pore salinity, which is typical of nonswelling clays. The attraction forces cause aggregation of the clay unit layers into domains that break down on sodium saturation of the clay specimens. It is inferred that the physico-chemical factors responsible for the nonswelling character of the seawater-equilibrated bentonite specimens at pore salt concentrations below 1.1 gL-1 are inadequate to explain the nonswelling character of smectite-rich Ariake marine clays. The lower consistency limits of the Ariake marine clays in comparison to the nonswelling character, seawater-equilibrated bentonite specimens is attributed to a relative deficiency of interparticle forces in the Ariake marine clay.
Resumo:
This paper studies the long-time behavior of the empirical distribution of age and normalized position of an age-dependent supercritical branching Markov process. The motion of each individual during its life is a random function of its age. It is shown that the empirical distribution of the age and the normalized position of all individuals alive at time t converges as t -> infinity to a deterministic product measure.
Resumo:
An optical microscopy study of stress relief patterns in diamond-like carbon films is presented. Interesting stress relief patterns are observed which include the well-known sinusoidal type, branching pattern and string-of-beads pattern. The last one is shown to relieve stresses under marginal conditions. Two new stress relief patterns are noted in the present study. One of them is of sinusoidal shape with two extra branches at every peak position. The distribution of different stress relief forms from the outer edge of the films towards the interior is markedly dependent on the film thickness. Our new patterns support the approach in which the stress relief forms have been analysed earlier using the theory of plate buckling.
Resumo:
Buckling of discretely stiffened composite cylindrical panels made of repeated sublaminate construction is studied using a finite element method. In repeated sublaminate construction, a full laminate is obtained by repeating a basic sublaminate, which has a smaller number of plies. This paper deals with the determination of the optimum lay-up for buckling by ranking of such stiffened (longitudinal and hoop) composite cylindrical panels. For this purpose we use the particularized form of a four-noded, 48 degrees of freedom doubly curved quadrilateral thin shell finite element together with a fully compatible two-noded, 16 degrees of freedom composite stiffener element. The computer program developed has been used, after extensive checking for correctness, to obtain an optimum orientation scheme of the plies in the sublaminate so as to achieve maximum buckling load for a specified thickness of typical stiffened composite cylindrical panels.