971 resultados para Broadband planar monopole Antennas
Resumo:
This paper details an investigation of a power combiner that uses a reflect array of dual-feed aperture-coupled microstrip patch antennas and a corporate-fed dual-polarized array as a signal distributing/combining device. In this configuration, elements of the reflect array receive a linearly polarized wave and retransmit it with an orthogonal polarization using variable-length sections of microstrip lines connecting receive and transmit ports. By applying appropriate lengths of these delay lines, the array focuses the transmitted wave onto the feed array. The operation of the combiner is investigated for a small-size circular reflect array for the cases of -3 dB, -6 dB and -10 dB edge illumination by the 2 x 2-element dual-polarized array.
Resumo:
The suitable use of array antennas in cellular systems results in improvement in the signal-to-interference ratio (StR), This property is the basis for introducing smart or adaptive antenna systems. in general, the SIR depends on the array configuration and is a function of the direction of the desired user and interferers. Here, the SIR performance for linear and circular arrays is analysed and compared.
Resumo:
In an earlier paper [Journal of Mathematical Economics, 37 (2002) 17-38], we proved that if a preference relation on a commodity space is non-representable by a real-valued function then that chain is necessarily a long chain, a planar chain, an Aronszajn-like chain or a Souslin chain. In this paper, we study the class of planar chains, the simplest example of which is the Debreu chain (R-2, <(l)). (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The stability of a steadily propagating planar premixed flame has been the subject of numerous studies since Darrieus and Landau showed that in their model flames are unstable to perturbations of any wavelength. Moreover, the instability was shown to persist even for very small wavelengths, i.e. there was no high-wavenumber cutoff of the instability. In addition to the Darrieus-Landau instability, which results from thermal expansion, analysis of the diffusional thermal model indicates that premixed flames may exhibit cellular and pulsating instabilities as a consequence of preferential diffusion. However, no previous theory captured all the instabilities including a high-wavenumber cutoff for each. In Class, Matkowsky & Klimenko (2003) a unified theory is proposed which, in appropriate limits and under appropriate assumptions, recovers all the relevant previous theories. It also includes additional new terms, not present in previous theories. In the present paper we consider the stability of a uniformly propagating planar flame as a solution of the unified model. The results are then compared to those based on the models of Darrieus-Landau, Sivashinsky and Matalon-Matkowsky. In particular, it is shown that the unified model is the only model to capture the Darrieus-Landau, cellular and pulsating instabilities including a high-wavenumber cutoff for each.
Resumo:
This communications describes an electromagnetic model of a radial line planar antenna consisting of a radial guide with one central probe and many peripheral probes arranged in concentric circles feeding an array of antenna elements such as patches or wire curls. The model takes into account interactions between the coupling probes while assuming isolation of radiating elements. Based on this model, computer programs are developed to determine equivalent circuit parameters of the feed network and the radiation pattern of the radial line planar antenna. Comparisons are made between the present model and the two-probe model developed earlier by other researchers.
Resumo:
For ground penetrating radar (GPR), smaller antennas would provide considerable practical advantages. Some of which are: portability; ease of use; and higher spatial sampling. A theoretical comparison of the fundamental limits of a small electric field antenna and a small magnetic field antenna shows that the minimum Q constraints are identical. Furthermore, it is shown that only the small magnetic loop antenna can be constructed to approach, arbitrarily closely, the fundamental minimum Q limit. This is achieved with the addition of a high permeability material which reduces energy stored in the magnetic fields. This is of special interest to some GPR applications. For example, applications requiring synthetic aperture data collection would benefit from the increased spatial sampling offered by electrically smaller antennas. Low frequency applications may also benefit, in terms of reduced antenna dimensions, by the use of electrically small antennas. Under these circumstances, a magnetic type antenna should be considered in preference to the typical electric field antenna. Numerical modeling data supports this assertion.
Resumo:
O trabalho descrito nesta dissertação de mestrado foca-se em geral na investigação de antenas impressas. São apresentados conceitos básicos, em conjunto com alguns exemplos desenvolvidos. No entanto, o principal foco prende-se com técnicas de miniaturização e reconfigurabilidade de antenas. A miniaturização de antenas é um tema de investigação de longa data, no entanto, novas técnicas e soluções são apresentadas regularmente. Nesta tese, é aplicada uma técnica recente, baseada na introdução de indutores encapsulados no elemento ressonante de uma antena, que permite miniaturizar um monopólio impresso com uma frequência de ressonância de 2.5 GHz. Outro assunto abordado neste trabalho é a reconfigurabilidade de antenas. Algumas das técnicas mais comuns na investigação actual são apresentadas e debatidas. Uma solução com recurso a díodos PIN é usada para estudar esta capacidade. Os conceitos e características deste tipo de componentes são apresentadas sendo feito o desenho e fabrico de um possível monopólio impresso reconfigurável para operação em dupla banda. Por fim, são combinadas as técnicas de miniaturização com inductor encapsulado e reconfigurabilidade através de díodos PIN, por forma a projectar uma antena reconfigurável muito pequena, para operação em duas bandas distintas. Os resultados são discutidos e com base nestes, algumas possíveis otimizações são propostas. The work reported in this dissertation is focused in the printed antenna research. Basic concepts of printed antennas are presented, along with a few examples that were developed. The main focus however, is around miniaturization and reconfigurability of antennas. Antenna miniaturization is a long time research subject, however, new techniques and solutions are presented everyday. In this thesis, a recent technique based on the introduction of chip inductors in the resonating element of a printed antenna is used in order to miniaturize a monopole with a resonating frequency at 2.5 GHz. Another issue approached in this work is antenna reconfigurability. Some common techniques used in antenna reconfiguration are presented and debated. A solution with PIN diodes is used to study this capability. The concepts and characteristics of this type of components are presented and an example of a reconfigurable printed monopole for dual-band operation is designed and fabricated. At last, miniaturization with chip inductor and reconfigurability through PIN diodes are used together to create a very small antenna for dual-band operation. The simulated and measured results are discussed and upon these, some possible optimizations are proposed.
Resumo:
Indoor localization systems in nowadays is a huge area of interest not only at academic but also at industry and commercial level. The correct location in these systems is strongly influenced by antennas performance which can provide several gains, bandwidths, polarizations and radiation patterns, due to large variety of antennas types and formats. This paper presents the design, manufacture and measurement of a compact microstrip antenna, for a 2.4 GHZ frequency band, enhanced with the use of Electromagnetic Band-Gap (EBG) structures, which improve the electromagnetic behavior of the conventional antennas. The microstrip antenna with an EBG structure integrated allows an improvement of the location system performance in about 25% to 30% relatively to a conventional microstrip antenna.
Resumo:
In this paper, the design of low profile antennas by using Electromagnetic Band Gap (EBG) structures is introduced. Taking advantage of the fact that they can behave as Perfect Magnetic Conductor (PMC), it is shown that these structures exhibit dual band in-phase reflection at WLAN (Wireless Local Area Network) bands, the 2.4 GHz and 5.2 GHz bands. These structures are applied to PIFA (Planar Inverted-F Antenna) and the results show that it is possible to obtain low profile PIFA's.
Resumo:
Radio frequency (RF) energy harvesting is an emerging technology that will enable to drive the next generation of wireless sensor networks (WSNs) without the need of using batteries. In this paper, we present RF energy harvesting circuits specifically developed for GSM bands (900/1800) and a wearable dual-band antenna suitable for possible implementation within clothes for body worn applications. Besides, we address the development and experimental characterization of three different prototypes of a five-stage Dickson voltage multiplier (with match impedance circuit) responsible for harvesting the RF energy. Different printed circuit board (PCB) fabrication techniques to produce the prototypes result in different values of conversion efficiency. Therefore, we conclude that if the PCB fabrication is achieved by means of a rigorous control in the photo-positive method and chemical bath procedure applied to the PCB it allows for attaining better values for the conversion efficiency. All three prototypes (1, 2 and 3) can power supply the IRIS sensor node for RF received powers of -4 dBm, -6 dBm and -5 dBm, and conversion efficiencies of 20, 32 and 26%, respectively. © 2014 IEEE.
Resumo:
Due to the application of active components into antennas these became a source of distortion on wireless communication systems. In this paper we explore the nonlinear effects occurring in a frequency reconfigurable antenna operating with a PIN Diode. We describe the measurement setup used to check the antenna intermodulation products and the measured compression and third order intermodulation limitations of a frequency reconfigurable antenna, operating at the UMTS and WLAN frequencies.
Resumo:
3D laser scanning is becoming a standard technology to generate building models of a facility's as-is condition. Since most constructions are constructed upon planar surfaces, recognition of them paves the way for automation of generating building models. This paper introduces a new logarithmically proportional objective function that can be used in both heuristic and metaheuristic (MH) algorithms to discover planar surfaces in a point cloud without exploiting any prior knowledge about those surfaces. It can also adopt itself to the structural density of a scanned construction. In this paper, a metaheuristic method, genetic algorithm (GA), is used to test this introduced objective function on a synthetic point cloud. The results obtained show the proposed method is capable to find all plane configurations of planar surfaces (with a wide variety of sizes) in the point cloud with a minor distance to the actual configurations. © 2014 IEEE.
Resumo:
A new inherently chiral calix[4]arene ICC 1 has been disclosed. The dissymmetry of 1 is generated from a chirality plane in the quinol moiety of a 1,3-bridged bicyclic calix[4]arene. ICC 1 has been resolved by enantioselective HPLC, and the chiroptical properties of both isolated antipodes (pS)-1 and (pR)-1 confirm their enantiomeric nature. The absolute configuration of the (pS)-1/(pR)-1 enantiomeric pair was established through time-dependent density functional theory (TDDFT) calculations of electronic circular dichroism (CD) spectra. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis of two new inherently chiral calix[4]arenes (ICCs, 1 and 2), endowed with electron-rich concave surfaces, has been achieved through the desymmetrization of a lower rim distal-bridged oxacyclophane (OCP) macrocycle. The new highly emissive ICCs were resolved by chiral HPLC, and the enantiomeric nature of the isolated antipodes proved by electronic circular dichroism (CD). Using time-dependent density functional calculations of CD spectra, their absolute configurations were established. NMR studies with (S)-Pirkle's alcohol unequivocally showed that the host-guest interactions occur in the chiral pocket comprehending the calix-OCP exo cavities and the carbazole moieties.