848 resultados para Brassicaceae


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of pollen in marine sediments is used to record vegetation change on the continent. Generally, a good latitudinal correspondence exists between the distribution patterns of pollen in the marine surface sediments and the occurrence of the source plants on the adjacent continent. To investigate land-sea interactions during deglaciation, we compare proxies for continental (pollen assemblages) and marine conditions (alkenone-derived sea surface temperatures) of two high-resolution, radiocarbon-dated sedimentary records from the tropical southeast Atlantic. The southern site is located West of the Cunene River mouth; the northern site is located West of the Angolan Huambe Mountains. It is inferred that the vegetation in Angola developed from Afroalpine and open savannah during the last Glacial maximum (LGM) via Afromontane Podocarpus forest during Heinrich Event 1 (H1), to an early increase of lowland forest after 14.5 ka. The vegetation record indicates dry and cold conditions during the LGM, cool and wet conditions during H1 and a gradual rise in temperature starting well before the Younger Dryas (YD) period. Terrestrial and oceanic climate developments seem largely running parallel, in contrast to the situation ca. 5° further South, where marine and terrestrial developments diverge during the YD. The cool and wet conditions in tropical West Africa, South of the equator, during H1 suggest that low-latitude insolation variation is more important than the slowdown of the thermohaline circulation for the climate in tropical Africa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Palynological analyses were performed on 53 surface sediment samples from the North Pacific Ocean, including the Bering and Okhotsk Seas (37-64°N, 144°E-148°W), in order to document the relationships between the dinocyst distribution and sea-surface conditions (temperatures, salinities, primary productivity and sea-ice cover). Samples are characterized by concentrations ranging from 18 to 143816 cysts/cm**3 and the occurrence of 32 species. A canonical correspondence analysis (CCA) was carried out to determine the relationship between environmental variables and the distribution of dinocyst taxa. The first and second axes represent, respectively, 47% and 17.8% of the canonical variance. Axis 1 is positively correlated with all parameters except to the sea-ice and primary productivity in August, which are on the negative side. Results indicate that the composition of dinocyst assemblages is mostly controlled by temperature and that all environmental variables are correlated together. The CCA distinguishes 3 groups of dinocysts: the heterotrophic taxa, the genera Impagidinium and Spiniferites as well as the cyst of Pentapharsodinium dalei and Operculodinium centrocarpum. Five assemblage zones can be distinguished: 1) the Okhotsk Sea zone, which is associated to temperate and eutrophic conditions, seasonal upwellings and Amur River discharges. It is characterized by the dominance of O. centrocarpum, Brigantedinium spp. and Islandinium minutum; 2) the Western Subarctic Gyre zone with subpolar and mesotrophic conditions due to the Kamchatka Current and Alaska Stream inflows. Assemblages are dominated by Nematosphaeropsis labyrinthus, Pyxidinopsis reticulata and Brigantedinium spp.; 3) the Bering Sea zone, depicting a subpolar environment, influenced by seasonal upwellings and inputs from the Anadyr and Yukon Rivers. It is characterized by the dominance of I. minutum and Brigantedinium spp.; 4) the Alaska Gyre zone with temperate conditions and nutrient-enriched surface waters, which is dominated by N. labyrinthus and Brigantedinium spp. and 5) the Kuroshio Extension-North Pacific-Subarctic Current zone characterized by a subtropical and oligotrophic environment, which is dominated by O. centrocarpum, N. labyrinthus and warm taxa of the genus Impagidinium. Transfer functions were tested using the modern analog technique (MAT) on the North Pacific Ocean (= 359 sites) and the entire Northern Hemisphere databases ( = 1419 sites). Results confirm that the updated Northern Hemisphere database is suitable for further paleoenvironmental reconstructions, and the best results are obtained for temperatures with an accuracy of +/-1.7 °C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies combining sedimentological and biological evidence to reconstruct Holocene climate beyond the major changes, and especially seasonality, are rare in Europe, and are nearly completely absent in Germany. The present study tries to reconstruct changes of seasonality from evidence of annual algal successions within the framework of well-established pollen zonation and 14C-AMS dates from terrestrial plants. Laminated Holocene sediments in Lake Jues (10°20.70' E, 51°39.30' N, 241 m a.s.l.), located at the SW margin of the Harz Mountains, central Germany, were studied for sediment characteristics, pollen, diatoms and coccal green algae. An age model is based on 21 calibrated AMS radiocarbon dates from terrestrial plants. The sedimentary record covers the entire Holocene period. Trophic status and circulation/stagnation patterns of the lake were inferred from algal assemblages, the subannual structure of varves and the physico-chemical properties of the sediment. During the Holocene, mixing conditions alternated between di-, oligo- and meromictic depending on length and variability of spring and fall periods, and the stability of winter and summer weather. The trophic state was controlled by nutrient input, circulation patterns and the temperature-dependent rates of organic production and mineralization. Climate shifts, mainly in phase with those recorded from other European regions, are inferred from changing limnological conditions and terrestrial vegetation. Significant changes occurred at 11,600 cal. yr. BP (Preboreal warming), between 10,600 and 10,100 cal. yr. BP (Boreal cooling), and between 8,400 and 4,550 cal. yr. BP (warm and dry interval of the Atlantic). Since 4,550 cal. yr. BP the climate became gradually cooler, wetter and more oceanic. This trend was interrupted by warmer and dryer phases between 3,440 and 2,850 cal. yr. BP and, likely, between 2,500 and 2,250 cal. yr. BP.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution palynological analysis on annually laminated sediments of Sihailongwan Maar Lake (SHL) provides new insights into the Holocene vegetation and climate dynamics of NE China. The robust chronology of the presented record is based on varve counting and AMS radiocarbon dates from terrestrial plant macro-remains. In addition to the qualitative interpretation of the pollen data, we provide quantitative reconstructions of vegetation and climate based on the method of biomization and weighted averaging partial least squares regression (WA-PLS) technique, respectively. Power spectra were computed to investigate the frequency domain distribution of proxy signals and potential natural periodicities. Pollen assemblages, pollen-derived biome scores and climate variables as well as the cyclicity pattern indicate that NE China experienced significant changes in temperature and moisture conditions during the Holocene. Within the earliest phase of the Holocene, a large-scale reorganization of vegetation occurred, reflecting the reconstructed shift towards higher temperatures and precipitation values and the initial Holocene strengthening and northward expansion of the East Asian summer monsoon (EASM). Afterwards, summer temperatures remain at a high level, whereas the reconstructed precipitation shows an increasing trend until approximately 4000 cal. yr BP. Since 3500 cal. yr BP, temperature and precipitation values decline, indicating moderate cooling and weakening of the EASM. A distinct periodicity of 550-600 years and evidence of a Mid-Holocene transition from a temperature-triggered to a predominantly moisture-triggered climate regime are derived from the power spectra analysis. The results obtained from SHL are largely consistent with other palaeoenvironmental records from NE China, substantiating the regional nature of the reconstructed vegetation and climate patterns. However, the reconstructed climate changes contrast with the moisture evolution recorded in S China and the mid-latitude (semi-)arid regions of N China. Whereas a clear insolation-related trend of monsoon intensity over the Holocene is lacking from the SHL record, variations in the coupled atmosphere-Pacific Ocean system can largely explain the reconstructed changes in NE China.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In der Döberitzer Heide nördlich von Potsdam wurden vegetationsgeschichtliche Untersuchungen durchgeführt. Das Untersuchungsgebiet befindet sich im östlichen Teil der Nauener Platte, die bisher vegetationsgeschichtlich weitgehend unerforscht war. In sechs verschiedenen Mooren wurden acht Bohrungen niedergebracht. Die Bohrkerne wurden stratigraphisch und pollenanalytisch untersucht und für die Radiocarbondatierung beprobt. Die Pollendiagramme ermöglichen die Rekonstruktion der Vegetationsentwicklung der terrestrischen Standorte und der Moore in der Döberitzer Heide in den letzten 14.000 Jahren. Neben einer Revision der Gliederungsprinzipien der spätglazialen Vegetationsentwicklung Brandenburgs und einer vergleichenden Betrachtung der Moorentwicklung in der Döberitzer Heide wurde besonderes Augenmerk auf die Geschichte des Döberitzer Lindenwaldes gerichtet, der einen Sonderfall in der brandenburgischen Vegetation darstellt. Die Untersuchungen boten die Möglichkeit, die Ursachen seiner Entstehung zu klären, Aussagen zu den Perspektiven seiner Entwicklung zu treffen und mögliche Entwicklungspotentiale von Lindenwäldern im Land Brandenburg aufzuzeigen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Late glacial and postglacial sediments from three former lakes in the Lake Garda area (Southern Alps) were investigated. 2. The pollen diagram from Bondone (1550 m) shows an older phase rich in NAP. A younger one corresponds with the Younger Dryas time according to two radiocarbon determinations. In the Preboreal no climatic deterioration could be found. 3. At first plants, which are nowadays typical for snow-ground, pioneer and dwarf shrub associations, immigrated into the surroundings of Bondone. In Alleröd times larch and pine appeared as the first trees. At the beginning of the Preboreal dense forest existed in that region. During the Alleröd timber line was at about 1500 m. 4. In the pollen diagrams from Saltarino (194 m) and Fiavè (654 m) an oldest period rich in NAP is followed by two stadial and two interstadial phases. Tree birches and larches immigrated during the oldest interstadial phase. 5. In the case of Saltarino and Fiavè only a preliminary dating could be made. A correlation seems to be possible with diagrams published by Zoller as well as with the diagram of Bondone. Discrepances in dating, which arise then, are discussed. According to the two possibilities of dating the youngest stadial is synchronous either with the so-called Piottino stadial or the Younger Dryas time. Consequently the oldest interstadial phase of Saltarino corresponds either with the Bölling or with a pre-Bölling interstadial. The last possibility seems to be more probable. 6. In the southern part of the Lake Garda area reforestation was preceded by a long shrub phase mainly with Juniperus. At about 650 m there was a period with Pinus mugo and only with a small amount of Juniperus before reforestation. A phase with Betula nana well known from areas north of the Alps could nowhere be found. 7. In the area under study larch appeared as the first tree. Lateron it has been the most important constituent of the forests near timber line. Birch, which plays an important role as a pioneer tree in Denmark - for instance at the transition of the pollen zones III/IV - as well as in Southern Germany during Bölling time, was of less importance at the southern border of the Alps. In that area the spreading of Pinus occurred very early causing dense forests. 8. During the last stadial phase (probably Younger Dryas time) dense forests with Pinus and Larix existed at 650 m. In the lower part of the Lake Garda area, however, both thermophilous trees as Quercus and herbs frequently occurred. This leads to the conclusion that during this time tree growth was limited by dryness in lower altitudes of the border of the Southern Alps. Pinus and Juniperus, however, do not show higher values in this period, a fact which cannot yet be explained. 9. A list of plants, which were found in the sediments, is compiled. Helodium lanatum, Dictamnus albus, Mercurialis cf. ovata, Buxus, Cerinthe cf. minor, Onosma, Anthericum and Asphodelus albus are findings, which are of special interest for the history of the flora of that region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seven sediment cores from the cruises of the "Meteor" and "Valdivia" were examined palynologically. The cores were retrieved from the lower continental slope in the area of between 33.5° N and 8° N, off the West African coast. Most of the cores contain sediments from the last Glacial and Interglacial period. In some cases, the Holocene sediments are missing. Some individual cores contain sediments also from earlier Glacial and Interglacial periods. The main reason for making this palynological study was to find out the differences between the vegetation of Glacial and Interglacial periods in those parts of West Africa which at present belong to the Mediterranean zone, the Sahara and the zones of the savannas and tropical forests. In today's Mediterranean vegetation zone at core 33.5° N, forests and deciduous forests in particular, are missing during Glacial conditions. Semi-deserts are found instead of these. In the early isotope stage 1, there is a very significant development of forests which contain evergreen oaks; this is the Mediterranean type of vegestation development. The Sahara type of vegetation development is shown in four cores from between 27° N and 19° N. The differences between Glacial and Interglacial periods are very small. It must be assumed therefore that in this latitudes, both Glacial and Interglacial conditions gave rise to desert generally. The results are in favour of a slightly more arid climate during Glacial and more humid one during Interglacial periods. The southern boundary of the Sahara and the adjacent savannas with grassland and tropical woods were situated more to the south during the Glacial periods than they were during the Interglacial ones. In front of today's savanna belt, it can be seen from the palynological results that there are considerable differences between the vegetation of Glacial and Interglacial periods. The woods are more important in Interglacial periods. During the Glacial periods these are replaced from north to south decreasingly by grassland (savanna and rainforest type of vegetation development). The southern limit of the Sahara during stage 2 was somewhat between 12° N and 8° N which is between 1.5 and 5 degrees in latitude further south than it i s today. Not only do these differences in climate and vegetation apply to the maximum of the last Glacial and for the Holocene, but they apparently apply also to the older Glacial and Interglacial periods, where they have been found in the profiles. The North African deset belt can be said to have expanded during Glacial times both towards the north and towards the south. All the available evidence of this study indicates that the grass land or the semi-desert of the Southern Europe cam einto connection with those of the N Africa; there could not have been any forest zone between them. The present study was also a good opportunity for investigating some of the basic marine palynological problems. The very well known overrepresentation of pollen grains of the genus Pinus in marine sediments can be traced as fa as 21° N. The present southern limit for the genus Pinus is on the Canaries and on the African continent as approximately 31° N. Highest values of Ephedra pollen grains even occur south of the main area of the present distribution of that genus. These does not seem to be any satisfactory explanation for this. In general, it would appear that the transport of pollen grains from the north is more important than transport from the south. The results so far, indicate strongly that further palynological studies are necessary. These should concentrate particularly on cores from between 33° N and 27° N as well as between 17° N and 10° N. It would also be useful to have a more detailed examination of sediments from the last Intergalcial period (substage 5 e). Absolute pollen counts and more general examination of surface samples would be desirable. Surface samples should be taken from the shelf down to the bottom of the continental slope in different latitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous pollen analytical studies on sediments from the pleistocene lake basin at Samerberg, situated on the northern edge of the Bavarian Alps (47°45' N, 12°12' E, 607 m a.s.l.) had been performed on samples taken from cores and exposures close to the southern shore of the former lake. After geoelectric and refraction-seismic measurements had shown that the lake basin had been much deeper in its northern part, another core was taken where maximum depth could be expected. The corer penetrated three moraines, two of them lying above pollen-bearing sediments, and one below them, and reached the hard rock (Kössener Kalk) at a depth of 93 m. Two forest phases could be identified by pollen analysis. The pollen record begins abruptly in a forest phase at the end of a spruce-dominated period when fir started to spread (DA 1, DA = pollen zone). Following this, Abies (fir) was the main tree species at Samerberg, Picea being second, and deciduous trees were almost non-existent. First box (Buxus) was of major importance in the fir forests (DA 2), but later on beech (Fagus) and wing-nut (Pterocarya) spread (DA 3). Finally this forest gave way to a spruce forest with pine (DA 4). The beginning and the end of this interglacial cycle are not recorded. Its vegetational development is different from the eemian one known from earlier studies at Samerberg. It is characterized by the occurrence of Abies together with Buxus, Pterocarya and Fagus. A similar association of woody species is known only from the Holsteinian age deposits in an area ranging from England to Poland, though at no other place these species were such important constituents of the vegetation as at Samerberg. Therefore zone 1 to 4 are attributed to the Holsteinian interglacial period. The younger forest phase, separated from the interglacial by a stadial with open vegetation (DA 5), seems to be completely represented, though its sediments are disturbed, apparently by sliding which caused repetition of same-age-sediments in the core (DA 7a, b, c) The vegetational development is simple. A juniper phase (DA 6) was followed by reforestation with spruce, accompanied by some fir (DA 7, 9). Finally pine became the dominant species (DA 9). The simple vegetational development of this younger forest phase does not allow a safe correlation with one of the known pre-eemian interstadials, but for stratigraphical reasons it can be related best to the Dömnitz-interglacial, which among others is also known as Wacken- or Holstein-II-interglacial. Possibly another phase of reforestation is indicated at the end of the following stadial (DA 10). But due to an erosional unconformity nothing than the rise of the juniper curve can be stated. It was only after this sequence of forest phases and periods with open vegetation that glaciers reached the Samerberg area again.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AMS-14C dated sediment cores from the Ob and Yenisei estuaries and the adjacent inner Kara Sea were investigated to determine the siliclastic and organic carbon fluxes and their relationship to paleoenvironmental changes. The variability of sediment fluxes during Holocene times is related to the post-glacial sea-level rise and changes in river discharge and coastal erosion input. Whereas during the late/middle Holocene most of the terrigenous sediments were deposited in the estuaries and the areas directly off the estuaries, huge amounts of sediments accumulated on the Kara Sea shelf farther north during the early Holocene before about 9 Cal. kyrs. BP. The maximum accumulation at that time is related to the lowered sea level, increased coastal erosion, and increased river discharge due to the final stage of mountain deglaciation of the Putoran Massif. Increased supply of Yenisei-derived material indicated by peak magnetic susceptibility values probably occurred in climate-related pulses culminating near 11, 10, and 9 Cal. kyrs. BP. As sea level rose, the main Holocene depocenter migrated southward. Based on hydrogen index values and n-alkanes, the organic matter is predominantly of terrigenous origin. Maximum accumulation rates of 1.5 to more than 6 g/cm2/y occurred in the early Holocene sediments, suggesting more humid climatic conditions with an increased vegetation cover in the source area at that time. In general, high organic carbon accumulation rates characterize the estuaries and the inner Kara Sea as important sink for terrigenous organic carbon. A high-resolution record of Holocene variability of magnetic susceptibility (MS) in an AMS14C-dated sediment core from the northern Yenisei estuary may indicate natural variability of Arctic climate change and river discharge on a centennial to millenial time scale. Short-term maxima in MS probably related to warmer climate, enhanced precipitation, intensified weathering/erosion and increased river discharge, display a frequency of about 300 to 700 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high-altitude lake Tso Moriri (32°55'46'' N, 78°19'24'' E; 4522 m a.s.l.) is situated at the margin of the ISM and westerly influences in the Trans-Himalayan region of Ladakh. Human settlements are rare and domestic and wild animals are concentrating at the alpine meadows. A set of modern surface samples and fossil pollen from deep-water TMD core was evaluated with a focus on indicator types revealing human impact, grazing activities and lake system development during the last ca. 12 cal ka BP. Furthermore, the non-pollen palynomorph (NPP) record, comprising remains of limnic algae and invertebrates as well as fungal spores and charred plant tissue fragments, were examined in order to attest palaeolimnic phases and human impact, respectively. Changes in the early and middle Holocene limnic environment are mainly influenced by regional climatic conditions and glacier-fed meltwater flow in the catchment area. The NPP record indicates low lake productivity with high influx of freshwater between ca. 11.5 and 4.5 cal ka BP which is in agreement with the regional monsoon dynamics and published climate reconstructions. Geomorphologic observations suggest that during this period of enhanced precipitation the lake had a regular outflow and contributed large amounts of water to the Sutlej River, the lower reaches of which were integral part of the Indus Civilization area. The inferred minimum fresh water input and maximum lake productivity between ca. 4.5-1.8 cal ka BP coincides with the reconstruction of greatest aridity and glaciation in the Korzong valley resulting in significantly reduced or even ceased outflow. We suggest that lowered lake levels and river discharge on a larger regional scale may have caused irrigation problems and harvest losses in the Indus valley and lowlands occupied by sedentary agricultural communities. This scenario, in turn, supports the theory that, Mature Harappan urbanism (ca. 4.5-3.9 cal ka BP) emerged in order to facilitate storage, protection, administration, and redistribution of crop yields and secondly, the eventual collapse of the Harappan Culture (ca. 3.5-3 cal ka BP) was promoted by prolonged aridity. There is no clear evidence for human impact around Tso Moriri prior to ca. 3.7 cal ka BP, with a more distinct record since ca. 2.7 cal ka BP. This suggests that the sedimentary record from Tso Moriri primarily archives the regional climate history.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ice-wedge polygon (IWP) mires in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from a low-centered IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, d13C), stable water isotopes (d18O, dD), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUs) correspond to the main stages of deposition (1) in a thermokarst lake (SU1: 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions in the IWP field that developed after drainage (SU3: 3120 cal yrs BP to AD 2012). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatoms species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(Einleitung) Im süddeutschen Jungmoränengebiet wurden während der letzten 25 Jahre verschiedene vegetationsgeschichtliche Arbeiten durchgeführt, die der Untersuchung der Späteiszeit galten. Die wichtigsten von ihnen stammen von G. Lang (1952), A. Bertsch (1961), H. Müller (1962) und H. Schmeidl (1971). Ohne Zweifel müssen die dabei gewonnenen Ergebnisse in anderen Landschaften des nördlichen Alpenvorlandes überprüft und verschiedene Probleme weiterhin verfolgt werden, wie z. B. das der Definition und Umgrenzung der Bölling-Zeit und der Älteren Tundrenzeit s. str. und die Abhängigkeit der Vegetationsentwicklung von der Meereshöhe. Die vorliegende Studie ging auch auf die Notwendigkeit zurück, die spätglazialen Ablagerungen bei dem Tonwerk Kolbermoor nahe Rosenheim, einer der klassischen Stätten der Quartärforschung im nördlichen Alpenvorland, einer vegetationsgeschichtlichen Neubearbeitung zu unterziehen. Die Untersuchungen wurden auf benachbarte Seen, den Sims-See und den Hofsrätter See, ausgedehnt, da die Ergebnisse von Kolbermoor faziell beeinflußt schienen (Niedermoore) und an limnischem Material überprüft werden mußten.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Palaeoecological investigations in the larch forest-tundra ecotone in northern Siberia have the potential to reveal Holocene environmental variations, which likely have consequences for global climate change because of the strong high-latitude feedback mechanisms. A sediment core, collected from a small lake (radius ~100 m), was used to reconstruct the development of the lake and its catchment as well as vegetation and summer temperatures over the last 7100 calibrated years. A multi-proxy approach was taken including pollen and sedimentological analyses. Our data indicate a gradual replacement of open larch forests by tundra with scattered single trees as found today in the vicinity of the lake. An overall trend of cooling summer temperature from a ~2 °C warmer-than-present mid-Holocene summer temperatures until the establishment of modern conditions around 3000 years ago is reconstructed based on a regional pollen-climate transfer function. The inference of regional vegetation changes was compared to local changes in the lake's catchment. An initial small water depression occurred from 7100 to 6500 cal years BP. Afterwards, a small lake formed and deepened, probably due to thermokarst processes. Although the general trends of local and regional environmental change match, the lake catchment changes show higher variability. Furthermore, changes in the lake catchment slightly precede those in the regional vegetation. Both proxies highlight that marked environmental changes occurred in the Siberian forest-tundra ecotone over the course of the Holocene.