327 resultados para Biomedicine
Resumo:
Kaposi's sarcoma herpesvirus (KSHV) is an oncogenic human virus and the causative agent of three human malignancies: Kaposi's sarcoma (KS), Multicentric Castleman's Disease (MCD), and primary effusion lymphoma (PEL). In tumors, KSHV establishes latent infection during which it produces no infectious particles. Latently infected cells can enter the lytic replication cycle, and upon provision of appropriate cellular signals, produce progeny virus. PEL, commonly described in patients with AIDS, represents a diffuse large-cell non-Hodgkin's lymphoma, with median survival time less than six months after diagnosis. As tumor suppressor gene TP53 mutations occur rarely in PEL, the aim of this thesis was to investigate whether non-genotoxic activation of the p53 pathway can eradicate malignant PEL cells. This thesis demonstrates that Nutlin-3, a small-molecule inhibitor of the p53-MDM2 interaction, efficiently restored p53 function in PEL cells, leading to cell cycle arrest and massive apoptosis. Furthermore, we found that KSHV infection activated DNA damage signaling, rendering the cells more sensitive to p53-dependent cell death. We also showed in vivo the therapeutic potential of p53 restoration that led to regression of subcutaneous and intraperitoneal PEL tumor xenografts without adversely affecting normal cells. Importantly, we demonstrated that in a small subset of intraperitoneal PEL tumors, spontaneous induction of viral reactivation dramatically impaired Nutlin-3-induced p53-mediated apoptosis. Accordingly, we found that elevated KSHV lytic transcripts correlated with PEL tumor burden in animals and that inhibition of viral reactivation in vitro restored cytotoxic activity of a small-molecule inhibitor of the p53-MDM2 interaction. Latency provides a unique opportunity for KSHV to escape host immune surveillance and to establish persistent infections. However, to maintain viral reservoirs and spread to other hosts, KSHV must be reactivated from latency and enter into the lytic growth phase. We showed that phosphorylation of nucleolar phosphoprotein nucleophosmin (NPM) by viral cyclin-CDK6 is critical for establishment and maintenance of the KSHV latency. In short, this study provides evidence that the switch between latent phase and lytic replication is a critical step that determines the outcome of viral infection and the pathogenesis of KSHV-induced malignancies. Our data may thus contribute to development of novel targeted therapies for intervention and treatment of KSHV-associated cancers.
Resumo:
Cyclosporine-A (CsA) is widely used after organ transplantation to prevent rejection and in the treatment of autoimmune diseases. Hypertension and nephrotoxicity are common side-effects of CsA. Studies in patients on the prevention of the side-effects of CsA are difficult to conduct because the patients often receive a combination of different drugs thus making study of the side-effects of a single drug impossible. A challenge in experimental studies has been the lack of an animal model in which the side-effects concomitantly occur. Epidemiological data show an association between sodium (Na) intake and blood pressure. There is also evidence on low dietary intake of magnesium (Mg) and potassium (K) and high blood pressure. Our study was designed to develop an experimental model to study the side-effects of CsA in spontaneously hypertensive rats (SHR). On high dietary sodium, CsA caused hypertension, left ventricular hypertrophy (LVH), narrowing of the coronary arteries, small myocardial infarctions, and proteinuria, reduced creatinine clearance and histopathological renal injury in SHR. Loss of Mg into the urine caused by CsA resulted in Mg depletion in the tissues. Renal excretion of dopamine was reduced and the renin-angiotensin-aldosterone system was activated. We investigated the effects of dietary Mg and/or K and the calcium antagonist drug, isradipine, on the prevention of CsA toxicity. Dietary supplementation of Mg alone or in combination with K prevented from the deleterious pathophysiological and histopathological changes in the kidneys and the heart. K alone had little effect. Isradipine protected better than Mg from LVH, but the combination of isradipine and Mg was the most effective. Isradipine did not, however, protect against Mg loss. In our animal model, the combination of high dietary Na and treatment with CsA accelerated the development of the cardiovascular and renal changes clinically known as the side-effects of CsA. Dietary supplementation of Mg and K and reduction of Na intake and the calcium antagonist drug isradipine prevent from the deleterious effects of CsA.
Resumo:
Colorectal cancer is one of the three most common cancers today, for both men and women. Approximately 90% of the cases are sporadic while the remaining 10% is hereditary. Among this 10% is hereditary nonpolyposis colorectal cancer (HNPCC), an autosomal dominant disease, accounting for up to 13% of these cases. HNPCC is associated with germline mutations in four mismatch repair (MMR) genes, MLH1, MSH2, MSH6, and PMS2, and is characterized by a familial accumulation of endometrial, gastric, urological, and ovarian tumors, in addition to colorectal cancer. An important etiological characteristic of HNPCC is the presence of microsatellite instability (MSI), caused by mutations of the MMR genes. Approximately 15% of sporadic cases share the MSI+ trait. Colon cancer is believed to be a consequence of an accumulation of mutations in tumor suppressor genes and oncogenes, eventually resulting in tumor development. This phenomena is accelerated in HNPCC due the presence of an inherited mutation in the MMR genes, accounting for one of the two hits proposed to be needed by Knudson (1971) in order for the manifestation of the MSI phenotype. MMR alterations alone, however, do not occur in the majority of sporadic colon cancers, prompting searches for other mechanisms. One such mechanism found to play a role in colon cancer development was DNA methylation, which is known to play a role in MLH1 inactivation. Our objective was clarification of mechanisms associated with tumor development in both HNPCC and sporadic colorectal cancer in relation to tumorigenic mechanisms. Of particular interest were underlying mechanisms of MSI in sporadic colorectal cancers, with attention to DNA methylation changes and their correlation to MSI. Of additional interest were the genetic and epigenetic events leading to the HNPCC tumor spectrum, chiefly colon and endometrial cancers, in regards to what extent the somatic changes in target tissue explained this phenomenon. We made a number of important findings pertaining to these questions. First, MSI tumor development differs epigenetically from stable tumor development, possibly underlying developmental pathway differences. Additionally, while epigenetic modification, principally DNA methylation, is a major mechanism in sporadic MSI colorectal cancer MLH1 inactivation it does not play a significant role in HNPCC tumors with germline MLH1 mutations. This is possibly an explanation for tumorigenic pathways and clinicopathological characteristic differences between sporadic and hereditary MSI colorectal cancers. Finally, despite indistinguishable genetic predisposition for endometrial and colorectal cancers, instability profiles highlighting organ-specific differences, may be important HNPCC tumor spectrum determinants.
Resumo:
One of the most important factors determining the development of atherosclerosis is the amount of LDL particles in the circulation. In general, LDL particles are clinically regarded as “bad cholesterol” since these particles get entrapped within the vascular wall, leading to atherosclerosis. Circulating HDL particles are conversely regarded as “good cholesterol” because of their ability to transport cholesterol from peripheral tissues to the liver for secretion as bile salts. Once inside the artery wall LDL particles are engulfed by macrophages, resulting in macrophage foam cells. If the macrophage foam cells are not able to efflux the cholesterol back into the bloodstream, the excessive cholesterol ultimately leads to cell death, and the deposition of cellular debris within the atherosclerotic lesion. The cells ability to secrete cholesterol is mainly dependent on the ABCA1 transporter (ATP-binding cassette transporter A1) which transfers cellular cholesterol to extracellular apoA-I (apolipoprotein A-I) particles, leading to the generation of nascent HDL particles. The process of atherosclerotic plaque development is therefore to a large extent a cellular one, in which the capacity of the macrophages in handling the excessive cholesterol load determines the progression of lesion development. In this work we have studied the cellular mechanisms that regulate the trafficking of LDL-derived cholesterol from endosomal compartments to other parts of the cell. As a basis for the study we have utilized cells from patients with Niemann-Pick type C disease, a genetic disorder resulting from mutations in the NPC1 and NPC2 genes. In these cells, cholesterol is entrapped within the endosomal compartment, and is not available for efflux. By identifying proteins that bypass the cholesterol trafficking defect, we were able to identify the small GTPase Rab8 as an important protein involved in ABCA1 dependent cholesterol efflux. In the study, we show that Rab8 regulates cholesterol efflux in human macrophages by facilitating intracellular cholesterol transport, as well as by regulating the plasma membrane availability of ABCA1. Collectively, these results give new insight in to atherosclerotic lesion development and intracellular cholesterol processing.
Resumo:
Microarrays have a wide range of applications in the biomedical field. From the beginning, arrays have mostly been utilized in cancer research, including classification of tumors into different subgroups and identification of clinical associations. In the microarray format, a collection of small features, such as different oligonucleotides, is attached to a solid support. The advantage of microarray technology is the ability to simultaneously measure changes in the levels of multiple biomolecules. Because many diseases, including cancer, are complex, involving an interplay between various genes and environmental factors, the detection of only a single marker molecule is usually insufficient for determining disease status. Thus, a technique that simultaneously collects information on multiple molecules allows better insights into a complex disease. Since microarrays can be custom-manufactured or obtained from a number of commercial providers, understanding data quality and comparability between different platforms is important to enable the use of the technology to areas beyond basic research. When standardized, integrated array data could ultimately help to offer a complete profile of the disease, illuminating mechanisms and genes behind disorders as well as facilitating disease diagnostics. In the first part of this work, we aimed to elucidate the comparability of gene expression measurements from different oligonucleotide and cDNA microarray platforms. We compared three different gene expression microarrays; one was a commercial oligonucleotide microarray and the others commercial and custom-made cDNA microarrays. The filtered gene expression data from the commercial platforms correlated better across experiments (r=0.78-0.86) than the expression data between the custom-made and either of the two commercial platforms (r=0.62-0.76). Although the results from different platforms correlated reasonably well, combining and comparing the measurements were not straightforward. The clone errors on the custom-made array and annotation and technical differences between the platforms introduced variability in the data. In conclusion, the different gene expression microarray platforms provided results sufficiently concordant for the research setting, but the variability represents a challenge for developing diagnostic applications for the microarrays. In the second part of the work, we performed an integrated high-resolution microarray analysis of gene copy number and expression in 38 laryngeal and oral tongue squamous cell carcinoma cell lines and primary tumors. Our aim was to pinpoint genes for which expression was impacted by changes in copy number. The data revealed that especially amplifications had a clear impact on gene expression. Across the genome, 14-32% of genes in the highly amplified regions (copy number ratio >2.5) had associated overexpression. The impact of decreased copy number on gene underexpression was less clear. Using statistical analysis across the samples, we systematically identified hundreds of genes for which an increased copy number was associated with increased expression. For example, our data implied that FADD and PPFIA1 were frequently overexpressed at the 11q13 amplicon in HNSCC. The 11q13 amplicon, including known oncogenes such as CCND1 and CTTN, is well-characterized in different type of cancers, but the roles of FADD and PPFIA1 remain obscure. Taken together, the integrated microarray analysis revealed a number of known as well as novel target genes in altered regions in HNSCC. The identified genes provide a basis for functional validation and may eventually lead to the identification of novel candidates for targeted therapy in HNSCC.