436 resultados para Biogas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta pesquisa apresenta uma revisão bibliográfica sobre as emissões de metano em aterros sanitários, os conceitos de geração de gases em aterros sanitários, movimentações de gases em aterro, apresenta os métodos de medição de gases in situ, tipos de cobertura finais para aterros e a oxidação do metano na camada de cobertura. A pesquisa também tem como objetivo medir as emissões de gases e avaliar a infiltração das águas pluviais através da camada de cobertura do aterro sanitário da CTR Nova Iguaçu. As medições foram realizadas nos meses de julho a novembro de 2010, na camada de cobertura monolítica existente e em outra construída sobre uma barreira capilar. Sensores para medir temperatura e umidade foram instalados em profundidade nas duas camadas. Foram realizados ensaios de placa de fluxo para medir a composição dos gases e o fluxo através dos dois tipos de camadas, e avaliadas duas situações: com os poços de extração de gás ativos e desligados. Os sensores indicaram que em período de baixa pluviosidade, a barreira capilar apresenta uma eficácia superior à camada monolítica, e com a intensificação das chuvas, as umidades medidas nos dois tipos de camadas aumentam, e na barreira capilar o gradiente estabelecido entre os sensores diminui, indicando uma possível tendência à saturação desta barreira capilar. Porém, com a paralisação das chuvas, recupera e retoma sua condição inicial. Os resultados de medidas dos gases demostraram a eficiência do sistema de extração de gás quando ativado, resultando em emissões quase nulas de metano e gás carbônico nos dois tipos de camadas. No entanto, quando o sistema está desativado, as emissões através da camada monolítica são cerca de 3 vezes maiores do que através da barreira capilar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study has established that the use of a computer model, the Anaerobic Digestion Model 1, is suitable for investigation of the stability and energy balance of the anaerobic digestion of food waste. In simulations, digestion of undiluted food waste was less stable than that of sewage sludge or mixtures of the two, but gave much higher average methane yields per volume of digester. In the best case scenario simulations, food waste resulted in the production of 5.3 Nm3 of methane per day per m3 of digester volume, much higher than that of sewage sludge alone at 1.1 Nm3 of methane per day per m3. There was no substantial difference in the yield per volatile solids added. Food waste, however, did not sustain a stable digestion if its cation content was below a certain level. Mixing food waste and sewage sludge allowed digestion with a lower cation content. The changes in composition of food waste feedstock caused great variation in biogas output and even more so volatile fatty acid concentration, which lowered the digestion stability. Modelling anaerobic digestion allowed simulation of failure scenarios and gave insights into the importance of the cation/anion balance and the magnitude of variability in feedstocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is potential to extract energy from wastewater in a number of ways, including: kinetic energy using micro-hydro systems, chemical energy through the incineration of sludge, biomass energy from the biogas produced after anaerobic sludge digestion, and thermal energy as heat. This paper considers the last option and asks how much heat could be recovered under UK climatic conditions and can this heat be used effectively by wastewater treatment plants to reduce their carbon footprint? Four wastewater treatment sites in southern England are investigated and the available heat that can be recovered at those sites is quantified. Issues relating to the environmental, economic and practical constraints on how energy can be realistically recovered and utilised are discussed .The results show there is a definite possibility for thermal energy recovery with potential savings at some sites of up to 35,000 tonnes of total long-cycle carbon equivalent (fossil fuel) emissions per year being achievable. The paper also shows that the financial feasibility of three options for using the heat (either for district heating, sludge drying or thermophilic heating in sludge digestion processes) is highly dependant upon the current shadow price of carbon. Without the inclusion of the cost of carbon, the financial feasibility is significantly limited. An environmental constraint for the allowable discharge temperature of effluent after heat-extraction was found to be the major limitation to the amount of energy available for recovery. The paper establishes the true potential of thermal energy recovery from wastewater in English conditions and the economic feasibility of reducing the carbon footprint of wastewater treatment operations using this approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing demand for energy and continuing increase in environmental as well as financial cost of use of fossil fuels drive the need for utilization of fuels from sustainable sources for power generation. Development of fuel-flexible combustion systems is vital in enabling the use of sustainable fuels. It is also important that these sustainable combustion systems meet the strict governmental emission legislations. Biogas is considered as one of the viable sustainable fuels that can be used to power modern gas turbines: However, the change in chemical, thermal and transport properties as well as change in Wobbe index due to the variation of the fuel constituents can have a significant effect on the performance of the combustor. It is known that the fuel properties have strong influence on the dynamic flame response; however there is a lack of detailed information regarding the effect of fuel compositions on the sensitivity of the flames subjected to flow perturbations. In this study, we describe an experimental effort investigating the response of premixed biogas-air turbulent flames with varying proportions of CH4 and CO2 to velocity perturbations. The flame was stabilized using a centrally placed conical bluff body. Acoustic perturbations were imposed to the flow using loud speakers. The flame dynamics and the local heat release rate of these acoustically excited biogas flames were studied using simultaneous measurements of OH and H2CO planar laser induced fluorescence. OH* chemiluminescence along with acoustic pressure measurements were also recorded to estimate the total flame heat release modulation and the velocity fluctuations. The measurements were carried out by keeping the theoretical laminar flame speed constant while varying the bulk velocity and the fuel composition. The results indicate that the flame sensitivity to perturbations increased with increased dilution of CH4 by CO2 at low amplitude forcing, while at high amplitude forcing conditions the magnitude of the flame response was independent of dilution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies on mixed mass cultivation of Anabaena spp. on a large scale (5170 m2) were conducted continuously for 3 years. Under the continental monsoon climate in northern subtropics (30-degrees-N, 115-degrees-E), 7-11 g dry weight m-2 day-1 of microalgal biomass on average was harvested in simple plastic greenhouses in the effective growth days during the warmer seasons. The maximum productivity was 22 g m-2 day-1 in the middle of summer. Observations on the productive properties of strains of Anabaena spp. indicated that they were different from and could compensate for each other in their productivities and adaptations to the seasonal changes. With different lining materials (PVC sheets, concrete, sand and soil) in the culture ponds, no significant variation of productivity was found, but bubbling with biogas in the middle of the day and the application of some growth regulating substances (2,4-D, NaHSO3 and extracts of oyster mushroom spawn) was able to improve the production. The cost of microalgal biomass in this way was around 0.75-1.0 US dollar(s) per kilogram.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

大型海藻的生产力高,生产成本低,是一种理想的能源作物。广东省是我国海洋大省之一,约35万平方公里的海域,海藻物种丰富,为海藻养殖提供了有利的条件。我省是能源消耗大省,大部分依靠外省调入和进口,发展海藻能源技术是缓解能源问题的重要途径之一。目前,海藻作为生物质的利用技术还不成熟。在本论文中,选用我省常见的江蓠、马尾藻和麒麟菜三种的大型的海藻进行热解和发酵实验。 首先,对海藻在不同温度下(400℃~900℃)热解得到的各产物(气体、焦油和残渣)产率和热值以及气体组分进行了分析,研究了各热解产物产率、热值和气体组分随温度的变化规律,分析热解过程中的K、Ca、Na、Mg等元素的析出和迁移规律。用去离子水和稀盐酸对海藻进行洗滤预处理,研究其热解特性,进行热重分析,建立海藻热解的反应动力学模型,并计算海藻的动力学参数。分析结果表明:热解气体中的主要成分为H2、CO、CH4、C2H4、C2H6等,热解气低位热值介于5~15 MJ/m3之间。海藻本身具有灰分含量较高和热值较低的特点,水洗可以有效地脱除部分的碱金属,并可以减少灰分含量,改善海藻的热解特性。 其次,以江蓠和马尾藻为底物进行发酵。结果表明:海藻中含有大量金属阳离子,直接发酵容易溶解到料液中,抑制微生物生长,影响发酵效果。用淡水浸泡以后的海藻能容易进行发酵。江蓠的产气率要高于马尾藻。在发酵温度为35℃,简单破碎,料液浓度为5%的条件下,江蓠TS(总固体)产气率是390.6L/kg 。在55℃,颗粒大小0.6~0.9mm,料液浓度为5%的条件下,马尾藻TS产气率是173.1L/kg。 通过对比海藻热解和发酵过程及结果的比较可以发现,海藻热解产气率低,碱金属容易析出;海藻发酵可以直接利用湿原料,产气率高,但发酵时间较长,需要合适的菌种。在目前没有特殊专有技术的情况下,采用发酵比采用热解实现海藻的能源化利用可能性更大。 最后,对本论文的研究探讨进行总结,并对今后进一步完善该工作提出了建议。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文从不同厌氧生境中获得7组(C-2、Y-2、L-2 、NZ、H-3、CZ、L-3)具有纤维素降解能力的复合菌系。经过不断传代、淘汰纤维素降解能力降低的菌系,最后得到一组高效、传代稳定的厌氧纤维素分解复合菌系L-3。该菌系可使滤纸在42 h内溃烂,并能在分解纤维素的同时产氢气。对L-3复合菌系的产酶条件进行了研究,结果表明,在实验范围内该菌系的产酶最适条件为:pH 6.5,温度37 ℃,接种量5 %,最佳碳源为滤纸,最佳氮源为硫酸铵。第10天测得羧甲基纤维素酶(CMCase)、滤纸酶(FPA)、外切葡聚糖酶(C1)、β-葡聚糖苷酶(β-glucodase)的酶活分别为0.216 U/ml、0.101 U/ml、0.132 U/ml、0.002 U/ml,滤纸失重率70.6 %。发酵代谢产物乙醇和丁酸含量分别可达1378 mg/L 、2695 mg/L,发酵产生的气体中氢气含量最高可达70.2 %。DGGE结果表明该菌系主要由14种菌组成,其中有三株菌在发酵前后菌数发生了明显的变化,说明在以滤纸为底物的降解过程中,这三株菌起到了重要作用,对这三株菌进行了分子生物学鉴定,初步定为Clostridium phytofermentans、Clostridium cellulovorans、Desulfovibrio sp。 利用实验室分离得到的纤维素降解菌,最终配制出由10、X-1、X-13、ST-13、L-3组成的好氧-厌氧纤维素降解复合菌剂。以秸秆为发酵底物,菌剂接种量1%,利用复合菌剂预处理后的秸秆,发酵总产气量相对于对照提高了71.62%,甲烷含量最高可达70.08%。 A group of microbial consortia L-3 was isolated from the anaerobic fermentation residue of corn stalk, which could degrade cellulose and produce hydrogen. The CMCase, FPA, C1 and β-glucosidase activity of L-3 could reach to 0.216 U/ml, 0.101 U/ml, 0.132 U/ml and 0.002 U/ml, respectively. In the filter degrading process, the filter paper collapsed in the liquid culture within 42 h and the filter degrading rate could reach to 70.6% in the 13 days, meanwhile, hydrogen was determined and the highest hydrogen content was 70.2%. The optimum cellulase-degrading conditions were filter papaer as the carbon source, (NH4)2SO4 as the nitrogen source, 37 ℃ and pH 6.5 in this experiment. DGGE results showed that the microbial consortia L-3 mainly included 14 strains. The amount of 3 strains were changed during the fermentation. These strains were identified as Clostridium phytofermentans、Clostridium cellulovorans、Desulfovibrio sp by 16S rDNA sequence analysis. The cellulose- degrading microbial agent was composed by 10, X-1, X-13, ST-13, L-3 which were isolated in the laboratory. The straw pretreated by cellulose-degrading microbial agent was used to ferment, the total biogas production increased by 72% comparing to the control. The content of methane could reach to 70.08%。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文从新鲜大熊猫粪便和实验室保存的沼气发酵富集物中筛选得到 4 株厌氧纤维素分解菌B5、C3、D3-2、D4-1,利用这4 株菌预处理秸秆,然后将预处理后的秸秆用本实验室保存的厌氧产氢菌来发酵进行生物产氢。同时还比较研究了:○1 用1% H2SO4、25% NH3 · H2O和12% NaOH对秸秆进行化学预处理;○2 用厌氧纤维素分解菌对秸秆进行生物预处理;○3 化学与生物组合预处理对秸秆发酵生物产氢的影响。实验结果表明:12% NaOH和生物组合预处理后的秸秆发酵产氢效果最好,其产氢量为21.04 mL g-1,是未经预处理秸秆的75 倍;最高氢气浓度为57.3%,是未经预处理秸秆的96 倍;其产氢的最适pH 为4.5 ~ 6.0,最佳底物浓度为45 ~ 55 g L-1;其发酵过程中的挥发性脂肪酸(VFAs)以乙酸和丁酸为主。 本实验筛选到的 4 株厌氧纤维素分解菌株中,B5 和D4-1 在降解纤维素的同时还具有直接以纤维素为底物产氢的功能,因此本文分别对菌株B5 和D4-1 以及二者的组合菌株B5+D4-1 直接利用秸秆为基质发酵生物产氢做了初步探索研究。结果发现:组合菌株发酵产氢的效果以及对秸秆纤维素和半纤维素的降解率要比单菌株好。菌株B5+D4-1 发酵,秸秆的产氢量为11.4 mL g-1,分别是B5 和D4-1 单菌株的1.6 倍和3.1 倍;组合菌株B5+D4-1 发酵的最大氢气浓度为31.6%,分别是B5 和D4-1 单菌株的1.3 倍和2.4 倍。在发酵过程中,组合菌株B5+D4-1 对秸秆纤维素和半纤维素的最高降解率分别为35.0%和11.8%,分别是菌株B5 的1.2 倍和1.1 倍,是菌株D4-1的1.5 倍和1.3 倍。菌株B5,D4-1 以及组合菌株B5+D4-1 发酵过程产生的挥发性脂肪酸(VFAs)均以乙酸为主。菌株B5 单独发酵过程中只检测到乙酸和丁酸,菌株D4-1 单独发酵以及组合菌株B5+D4-1 发酵过程检测到有乙醇、乙酸和丁酸。 The fermentative bio-hydrogen production by anaerobic hydrogen bacteria preserved in our laboratory from the straw which had been pretreated by four anaerobic cellulolytic decomposition strains of B5, C3, D3-2, D4-1 which were isolated and screened from giant panda’s excrement and biogas fermentation enrichments conserved in our laboratory was studied. Besides, the impact of chemical(1% H2SO4、25% NH3·H2O and 12% NaOH), biological (cellulolytic strains of B5, C3, D3-2, D4-1) and chemical-biological combination pretreatment on bio-hydrogen production from straw by fermentation was also comparatively studied. The experiments showed that the best results of bio-hydrogen production were obtained from the straw with 12% NaOH-biological combination pretreatment method, its capability of bio-hydrogen production was 21.04 mL g-1, which was 75 times higher than the straw without pretreatment; the maximum concentration of H2 was 57.3%, which was 96 times higher than the straw without pretreatment; its optimum pH range was 4.5 ~ 6.0, and its optimum range of substrate concentration was 45 ~ 55 g L-1; In the process of fermentation, the main composition of VFAs were acetate and butyrate. Among the four strains of B5, C3, D3-2, D4-1, B5 and D4-1 have the function of hydrogen-producing by cellulose used as substrate when it decompose cellulose, so the preliminary exploration and research on fermentative bio-hydrogen production by B5, D4-1 and B5+D4-1 which directly used straw as substrate was carried out. The results showed that the combination strains of B5+D4-1 was strikingly better than either B5 or D4-1 strain in the fermentative hydrogen production. The hydrogen-production capability of B5+D4-1 was 11.4 mL g-1 which was respectively 1.6 times and 3.1times higher than B5 and D4-1; the maximum hydrogen concentration of B5+D4-1 was 31.6% which was respectively 1.3 times and 2.4 times higher than B5 and D4-1. In the process of fermentation, the maximum degradation rate of cellulose and hemicellulose in straw was respectively 35.0% and 11.8% by B5+D4-1, which was 1.2 times and 1.1 times higher than B5, and was 1.5 times and 1.3 times higher than D4-1 respectively. The Volatile Fattty Acids(VFAs) generated in the process of fermentation with strains of B5, D4-1 and B5+D4-1 were all mainly acetate. Acetate and butyrate were detected in the process of fermentation with B5, ethonal, acetate and butyrate were detected in the process of fermentation with D4-1 and B5+D4-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

木质纤维素原料种类多、分布广、数量巨大,通过燃料乙醇生产技术、厌氧沼气发酵技术将其转化成乙醇、沼气等二次能源,一定程度上可以缓解化石能源的不断消耗所带来的能源危机,也解决了农林废弃物引起的环境污染问题。其中以木质纤维素原料生产燃料乙醇,还可以避免以淀粉类和糖类原料生产燃料乙醇时带来的“与人争粮”等一系列问题。因此具有重要的经济效益、环境效益和社会效益。 然而,木质纤维素原料结构致密,木质素包裹在纤维素、半纤维素外围,导致其很难被降解利用,必须进行适当的预处理,去除木质素,打破原有的致密结构,利于原料的后续利用。因此,预处理成为木质纤维素原料能源化利用的关键。而目前预处理环节的费用过于昂贵,于是寻找一种高效、低成本的预处理方法是当今研究的热点。 本论文采用组合白腐真菌对木质纤维素原料进行生物预处理研究,与其他物理化学法相比,该法有着专一性较强、反应温和、不造成环境污染、成本低等优势。白腐真菌主要通过分泌木质素降解酶对木质素进行降解,从而破坏原料的致密结构,提高后续利用效率。所以木质素降解酶酶活的高低是影响原料预处理效果的一个关键因素。于是本论文首先通过将白腐真菌进行组合的方式提高木质素降解酶(漆酶,Lac)酶活;接着对组合菌的菌株相互作用机理进行研究,阐明组合菌Lac 酶活提高的原因,为菌株组合提高Lac 酶活这种方法的应用提供理论依据,同时也为后续组合白腐真菌预处理木质纤维素原料提供指导;进一步采用固态发酵和木质素降解酶两种方式对木质纤维素原料进行预处理研究,最大化去除木质素成分,破坏原料的致密结构;最终对预处理后原料的酶解糖化进行初步研究,为原料后续的能源化应用奠定基础。具体研究结果如下: (1) 以实验室保存的三株主要分泌Lac 的白腐真菌为出发菌株,筛选得到一组Lac 酶活明显提高的组合菌55+m-6,其中菌株55 为Trametes trogii sp.,m-6 为Trametes versicolor sp.,组合后Lac 酶活较单菌株分别提高24.13倍和4.07 倍。组合菌的最适产酶条件为pH 6.5、C/N 16:1、Tween 80 添加量为0.01%,在该条件下组合菌的Lac 酶活峰值比未优化时提高4.11倍。 (2) 对组合菌55+m-6 菌株间相互作用机理进行研究,发现菌株之间不存在抑制作用;平板培养时,菌丝交界处Lac 酶活最高并分泌棕色色素;液体培养时,菌株m-6 对组合后Lac 酶活的提高起着更为重要的作用:菌株m-6的菌块、过滤灭菌胞外物以及高温灭菌胞外物均能明显刺激菌株55 的Lac产生;菌株55、m-6 进行组合后,同工酶种类未发生增减,但有三种Lac同工酶浓度有所提高;对菌株胞外物进行薄层层析和质谱分析,结果表明组合前后菌株胞外物中各物质在浓度上存在较大的变化。推测组合菌Lac酶活的明显提高,主要是由于菌株m-6 胞外物中的一些物质能刺激菌株55 分泌大量Lac 进行代谢,且这些刺激物质并非菌株m-6 特有,菌株55自身也可以代谢生成,但是适当的浓度才能刺激Lac 的大量分泌。 (3) 将组合菌55+m-6 用于固态发酵预处理木质纤维素原料,发现其对玉米秆的降解程度最大,在粉碎度40 目、含水率65%的最优处理条件下,处理至第15d,秸秆失重率为41.24%,其中木质素、纤维素、半纤维素均有降解,且Lac 和纤维素酶(CMC)酶活以及还原糖量均达到峰值。 (4) 对玉米秆进行木质素降解酶预处理,发现Lac/1-羟基苯并三唑(HBT)系统对玉米秆木质素的降解效果最好,在最优处理条件时,即HBT 用量0.2%、处理时间1d、Lac 用量50U/g,木质素降解率可达12.60%。预处理后玉米秆的致密结构被破坏,比表面积增大,利于后续酶与纤维素、半纤维素成分的结合。 (5) 对预处理后的玉米秆进行酶解糖化,其中组合菌固态发酵预处理后玉米秆的糖化率比对照高4.33 倍;Lac/HBT 系统预处理后玉米秆的糖化率比对照高2.99%,糖化液中主要含有木糖、葡萄糖两种单糖。 There are many kinds and large quantities of lignocellulosic biomass widely distributed on the earth. They can be converted into secondary energy such as fuel ethanol, biogas, et al., which can relieve the energy crisis caused by consumption of fossil energy resources and solve the problem of environmental pollution caused by agriculture and forestry waste. Meanwhile, the production of fuel ethanol from lignocellulosic biomass can ensure food supply to human kind instead of starch- and sugar-containing raw materials. So the energy conversion of lignocellulosic biomass contributes considerable economic, environment and social benefits. However, lignocellulosic biomass has the compact structure, in which lignin surrounds cellulose and hemicellulose, so it must be pretreated before energy usage and pretreatment is one of the most critical steps in the energy conversion of lignocellulosic biomass. At present, the cost of pretreatment is too expensive, so looking for an efficient and low-cost pre-treatment method is one of recent research hot spots. In this research, combined white rot fungi pretreatment method was used, which had some advantages in low cost, high specificity, mild reacting conditions and friendly environmental effects compared with the other physical and chemical methods. White rot fungi secrete lignin degrading enzymes to degrade the content of lignin and damage the contact structure of lignocellulosic biomass, so the activity of the lignin degrading enzymes is the key factor to the degradation effect of raw materials. Firstly, the combined fungi with high laccase activity were screened; secondly, the interaction mechanism between strains was studied, and the cause of higher laccase activity after strains combination was also preliminary clarified; under the guidance of the mechanism, lignocellulosic biomass was pretreated by the combined fungi; lastly, the enzymatic hydrolysis of pretreated lignocellulosic biomass was also preliminary studied; all of the researches could lay the foundation for the energy application of lignocellulosic biomass. The specific research results were as follows: (1) The combined fungi 55+m-6 with significant higher laccase activity were screened from the three white rot fungi stored in our lab which mainly secreted laccase. Strain 55 and strain m-6 were Trametes trogii sp. and Trametes versicolor sp., respectively. The laccase activity of combined fungi was 24.13 and 4.07-fold than strain 55 and strain m-6, respectively. The optimized condition for laccase production of the combined fungi in liquid medium was pH 6.5, C/N 16:1 and Tween 80 0.01%. In this optimized condition, the laccase activity of combined fungi was 4.11-fold higher comparing with which in non-optimized medium. (2) The interaction mechanism between strain 55 and strain m-6 was further studied, and no inhibition effect was observed. Brown pigment was secreted on the junction of the two strains on the plate, where the highest laccase activity was detected. Strain m-6 was much important to boost laccase activity of combined fungi in liquid medium, and strain 55 was stimulated by fungal plug, filter sterilized extracellular substances and high temperature sterilized extracellular substances of strain m-6 to produce laccase. The types of laccase isozymes did not change after combining strain 55 and strain m-6, but the concentrations of three types increased. Mass Spectrometry and TLC analysis of extracellular substances of each strain showed that concentration of some substances considerably changed after strains were combined. It was supposed that the cause of higher laccase activity of combined fungi was mainly due to some extracellular substances of strain m-6 with the appropriate concentration which stimulated laccase secretion of strain 55 and generated not only by strain m-6 but also by strain 55. (3) Combined fungi 55+m-6 were used to lignocellulosic biomass pretreatment with the type of solid-state fermentation. The highest degree of degradation of corn straw was obtained, including the rate of weight loss was 41.24% and the lignin, cellulose and hemicellulose were degraded partially under the optimized condition of 40 mesh, 65% water content on 15th day. Laccase, CMCase activities and content of reducing sugar reached the maximum value on that day. (4) Lignin degrading enzymes from combined fungi 55+m-6 were used for corn straw pretreatment. The most remarkable degradation of lignin in corn straw with Lac/1-hydroxybenzotriazole (HBT) system was observed, and the 12.60% lignin degradation was obtained under the optimized condition of 0.2% HBT, 50 U/g laccase for 1 d. After pretreated by Lac/HBT, the tight structure of corn straw was demolished and specific surface area increased, which had advantages for accessible of enzyme to cellulose and hemicellulose. (5) The corn straws pretreated by combined fungi 55+m-6 with the type of solid-state fermentation and Lac/HBT were used for enzymatic hydrolysis, and the saccharification rates of each pretreatment type were 4.33 times and 2.99% higher than CK, respectively. The enzymatic hydrolysis liquid of corn straw pretreated by Lac/HBT mainly contained xylose and glucose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sangequan Uplift in Junggar Basin is an inherited positive structure, which has undergone many times of violent tectonic movements, with high tectonic setting, and far away from the oil-source sag, reservoir forming condition is complex. Combining sequence stratigraphy, depositional facies, reservoir formation theory with seismic and well logging analysis, this paper conducted integrated study on the hydrocarbon migration, accumulation, entrapment conditions, the reservoir forming dynamics and the forming model, and acquired the following recognition: (1) The special reservoir formation conditions that enable Sangequan Uplift to form a giant oil-gas field of over 100 million tons of reserves are as follows: (D Deltaic frontal sandbody is developed in Jurassic Xishanyao Formation, Toutunhe Formation and Lower Cretaceous Hutubihe Formation, with good reservoir quality;? Abundant hydrocarbon resources are found in Western Well Pen-1 Sag, which provides sufficient oil sources for reservoir formation of Sagequan Uplift; ?The unconformity-fault-sandbody system has formed a favorable space transporting system and an open conduit for long-distance hydrocarbon migration; ?fault, low amplitude anticline and lithological traps were well developed, providing a favorable space for hydrocarbon accumulation. (2) The most significant source beds in the Western Well Pen-1 Sag are the Mid-Permian Lower Wuerhe Formation and Lower-Permian Fengcheng Formation. The oil in the Well Block Lu-9 and Shinan Oilfield all originated from the hydrocarbon source beds of Fengcheng Formation and Lower Wuerhe Formation in the Western Well Pen-1 Sag and migrated through Jidong and Jinan deep faults linking unconformity of different regions from sources to structural highs of the uplift and shallow horizons. (3) There were 2 reservoir formation periods in District Sangequan: the first was in late Cretaceous during which the upper part of Xishanyao Formation and Toutunhe Formation; the second was in Triassic, the main resources are high-maturity oil and gas from Fengcheng Formation and Wuerhe Formation in Western Pen-1 Well sag and the gas from coal measure strata of Xishanyao Formation, that were accumulated in Hutubihehe Formation. (4) Model of the hydrocarbon migration, accumulation, reservoir formation of the study area are categorized as three types starting from the hydrocarbon source areas, focusing on the faults and unconformity and aiming at reservoirs: ① Model of accumulation and formation of reservoir through faults or unconformities along the "beam" outside source; ②Model of migration, accumulation and reservoir formation through on-slope near source;③Model of migration, accumulation and reservoir formation of marginal mid-shallow burial biogas-intermediate gas. (5) Pinchout, overlap and lithologic traps are developed in transitional zones between Western Well Pen-1 sag and Luliang uplift. Many faulted blocks and faulted nose-like traps are associated with large structures on Sangequan uplift. Above traps will be new prospecting areas for further hydrocarbon exploration in future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anaerobic digestion (AD) of biodegradable waste is an environmentally and economically sustainable solution which incorporates waste treatment and energy recovery. The organic fraction of municipal solid waste (OFMSW), which comprises mostly of food waste, is highly degradable under anaerobic conditions. Biogas produced from OFMSW, when upgraded to biomethane, is recognised as one of the most sustainable renewable biofuels and can also be one of the cheapest sources of biomethane if a gate fee is associated with the substrate. OFMSW is a complex and heterogeneous material which may have widely different characteristics depending on the source of origin and collection system used. The research presented in this thesis investigates the potential energy resource from a wide range of organic waste streams through field and laboratory research on real world samples. OFMSW samples collected from a range of sources generated methane yields ranging from 75 to 160 m3 per tonne. Higher methane yields are associated with source segregated food waste from commercial catering premises as opposed to domestic sources. The inclusion of garden waste reduces the specific methane yield from household organic waste. In continuous AD trials it was found that a conventional continuously stirred tank reactor (CSTR) gave the highest specific methane yields at a moderate organic loading rate of 2 kg volatile solids (VS) m-3 digester day-1 and a hydraulic retention time of 30 days. The average specific methane yield obtained at this loading rate in continuous digestion was 560 ± 29 L CH4 kg-1 VS which exceeded the biomethane potential test result by 5%. The low carbon to nitrogen ratio (C: N <14:1) associated with canteen food waste lead to increasing concentrations of volatile fatty acids in line with high concentrations of ammonia nitrogen at higher organic loading rates. At an organic loading rate of 4 kg VS m-3day-1 the specific methane yield dropped considerably (381 L CH4 kg-1 VS), the pH rose to 8.1 and free ammonia (NH3 ) concentrations reached toxicity levels towards the end of the trial (ca. 950 mg L-1). A novel two phase AD reactor configuration consisting of a series of sequentially fed leach bed reactors connected to an upflow anaerobic sludge blanket (UASB) demonstrated a high rate of organic matter decay but resulted in lower specific methane yields (384 L CH4 kg-1 VS) than the conventional CSTR system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On-farm biogas production is typically associated with forage maize as the biomass source. Digesters are designed and operated with the focus of optimising the conditions for this feedstock. Thus, such systems may not be ideally suited to the digestion of grass. Ireland has ca. 3.85 million ha of grassland. Annual excess grass, surplus to livestock requirements, could potentially fuel an anaerobic digestion industry. Biomethane associated with biomass from 1.1 % of grassland in Ireland, could potentially generate over 10 % renewable energy supply in transport. This study aims to identify and optimise technologies for the production of biomethane from grass silage. Mono-digestion of grass silage and co-digestion with slurry, as would occur on Irish farms, is investigated in laboratory trials. Grass silage was shown to have 7 times greater methane potential than dairy slurry on a fresh weight basis (107 m3 t-1 v 16 m3 t-1). However, comprehensive trace element profiles indicated that cobalt, iron and nickel are deficient in mono-digestion of grass silage at a high organic loading rate (OLR) of 4.0 kg VS m-3 d-1. The addition of a slurry co-substrate was beneficial due to its wealth of essential trace elements. To stimulate hydrolysis of high lignocellulose grass silage, particle size reduction (physical) and rumen fluid addition (biological) were investigated. In a continuous trial, digestion of grass silage of <1 cm particle size achieved a specific methane yield of 371 L CH4 kg-1 VS when coupled with rumen fluid addition. The concept of demand driven biogas was also examined in a two-phase digestion system (leaching with UASB). When demand for electricity is low it is recommended to disconnect the UASB from the system and recirculate rumen fluid to increase volatile fatty acid (VFA) and soluble chemical oxygen demand (SCOD) production whilst minimising volatile solids (VS) destruction. At times of high demand for electricity, connection of the UASB increases the destruction of volatiles and associated biogas production. The above experiments are intended to assess a range of biogas production options from grass silage with a specific focus on maximising methane yields and provide a guideline for feasible design and operation of on-farm digesters in Ireland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Environmental concerns relating to gaseous emissions from transport have led to growth in the use of compressed natural gas vehicles worldwide with an estimated 13 million Natural Gas Vehicles (NGVs) currently in operation. Across Europe, many countries are replacing traditional diesel oil in captive fleets such as buses used for public transport and heavy and light goods vehicles used for freight and logistics with CNG vehicles. Initially this was to reduce localised air pollution in urban environments. However, with the need to reduce greenhouse gas emissions CNG is seen as a cleaner more energy efficient and environmental friendly alternative. This paper briefly examines the growth of NGVs in Europe and worldwide. Then a case study on CNG the introduction in Spain and Italy is presented. As part of the case study, policy interventions are examined. Finally, a statistical analysis of private and public refuelling stations in both countries is also provided. CNG can also be mixed with biogas. This study and the role of CNG is relevant because of the existing European Union Directive 2009/28/EC target, requiring that 10% of transport energy come from renewable sources, not alone biofuels such as biogas. CNG offers another alternative transport fuel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Turbocompounding is the process of recovering a proportion of an engine’s fuel energy that would otherwise be lost in the exhaust process and adding it to the output power. This was first seen in the 1930s and is carried out by coupling an exhaust gas turbine to the crankshaft of a reciprocating engine. It has since been recognised that coupling the power turbine to an electrical generator instead of the crankshaft has the potential to reduce the fuel consumption further with the added flexibility of being able to decide how this recovered energy is used. The electricity generated can be used in automotive applications to assist the crankshaft using a flywheel motor generator or to power ancillaries that would otherwise have run off the crankshaft. In the case of stationary power plants, it can assist the electrical power output. Decoupling the power turbine from the crankshaft and coupling it to a generator allows the power electronics to control the turbine speed independently in order to optimise the specific fuel consumption for different engine operating conditions. This method of energy recapture is termed ‘turbogenerating’.

This paper gives a brief history of turbocompounding and its thermodynamic merits. It then moves on to give an account of the validation of a turbogenerated engine model. The model is then used to investigate what needs to be done to an engine when a turbogenerator is installed. The engine being modelled is used for stationary power generation and is fuelled by an induced biogas with a small portion of palm oil being injected into the cylinder to initiate combustion by compression ignition. From these investigations, optimum settings were found that result in a 10.90% improvement in overall efficiency. These savings relate to the same engine without a turbogenerator installed operating with fixed fuelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concentration of organic acids in anaerobic digesters is one of the most critical parameters for monitoring and advanced control of anaerobic digestion processes. Thus, a reliable online-measurement system is absolutely necessary. A novel approach to obtaining these measurements indirectly and online using UV/vis spectroscopic probes, in conjunction with powerful pattern recognition methods, is presented in this paper. An UV/vis spectroscopic probe from S::CAN is used in combination with a custom-built dilution system to monitor the absorption of fully fermented sludge at a spectrum from 200 to 750 nm. Advanced pattern recognition methods are then used to map the non-linear relationship between measured absorption spectra to laboratory measurements of organic acid concentrations. Linear discriminant analysis, generalized discriminant analysis (GerDA), support vector machines (SVM), relevance vector machines, random forest and neural networks are investigated for this purpose and their performance compared. To validate the approach, online measurements have been taken at a full-scale 1.3-MW industrial biogas plant. Results show that whereas some of the methods considered do not yield satisfactory results, accurate prediction of organic acid concentration ranges can be obtained with both GerDA and SVM-based classifiers, with classification rates in excess of 87% achieved on test data.