934 resultados para Bi-directional coupling
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The authors examine the evidence on the relationship between inflation and productivity growth for nine Asian economies using causality analysis in a multivariate model with money supply as a possible effective monetary policy tool. The inflation-productivity growth relationship is found to be non-uniform, as the evidence of uni-directional, bi-directional, and no causality between the two variables is varied and significant for some countries and insignificant for others. An attempt is made to explain the inflation-productivity nexus for these countries and to discuss implications for anti-inflationary policies such as inflation targeting.
Resumo:
Grid connected PhotoVoltaic (PV) inverters fall into three broad categories — Central, String and Module Integrated Converers (MICs). MICs offer any avantaes in performance and flexibility, but are at a cost disadvantage. Two alternative novel approaches proposed by the author — cascaded dc-dc MICs and bypass dc-dc MICs — integrate a simple non-isolated intelligent dc-dc converter with each PV module to provide the advantages of dc-ac MICs at a lower cost. A suitable universal 150W 5A dc-dc converter design is presented based on two interleaved MOSFET half bridges. Testing shows Zero Voltage Switching (ZVS) keeps losses under 1W for bi-directional power flows up to 15W between two adjacent 12V PV modules for the bypass application, and efficiencies over 94% for most of the operational power range for the cascaded converter application. Based on the experimental results, potential optimizations to further reduce losses are discussed.
Resumo:
This thesis presents a numerical and experimental investigation on applications of ultralong Raman fibre lasers in optical communications, supercontinuum generation and soliton transmission. The research work is divided in four main sections. The first involves the numerical investigation of URFL intra-cavity power and the relative intensity noise transfer evolution along the transmission span. The performance of the URFL is compared with amplification systems of similar complexity. In the case of intracavity power evolution, URFL is compared with a first order Raman amplification system. For the RIN transfer investigation, URFL is compared with a bi-directional dual wavelength pumping system. The RIN transfer function is investigated for several cavity design parameters such as span length, pump distribution and FBG reflectivity. The following section deals with experimental results of URFL cavities. The enhancement of the available spectral bandwidth in the C-band and its spectral flatness are investigated for single and multi-FBGs cavity system. Further work regarding extended URFL cavity in combination with Rayleigh scattering as random distributed feedback produced a laser cavity with dual wavelength outputs independent to each other. The last two sections relate to URFL application in supercontinuum (SC) generation and soliton transmission. URFL becomes an enhancement structure for SC generation. This thesis shows successful experimental results of SC generation using conventional single mode optical fibre and pumped with a continuous wave source. The last section is dedicated to soliton transmission and the study of soliton propagation dynamics. The experimental results of exact soliton transmission over multiple soliton periods using conventional single mode fibre are shown in this thesis. The effect of the input signal, pump distribution, span length and FBGs reflectivity on the soliton propagation dynamics is investigated experimentally and numerically.
Resumo:
We present a study on the potential use of ultra-longlasercavities for unrepeateredfiber communication, based on the theory of nonlinearity management. A comparison is offered between the performance of ultra-longlasers and standard bi-directional distributed amplification schemes in nonrepeated transmission. Links based on both traditional (SMF/DCF) and modern Ultrawave transmissionfibers are considered.
Resumo:
The aim of this thesis is to investigate the physicochemical parameters which can influence drug loading within liposomes and to characterise the effect such formulations have on drug uptake and transport across in vitro epithelial barrier models. Liposomes composed of phosphatidylcholine (PC) or distearoyl phosphatidylcholine (DSPC) and cholesterol (0, 4, 8, 16 µM) were prepared and optimised in terms of drug loading using the hand-shaking method (Bangham et al., 1965). Subsequently, liposomes composed of 16 µM PC or DSPC and cholesterol (4 µM) were used to monitor hydroxybenzoate release and transport from Iiposomes. The MIT (3[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) and crystal violet assays were employed to determine toxicity of the Iiposome. formulations towards the Caco-2 cell line, employed to model the epithelial barrier in vitro. Uptake and transport of mannitol, propranolol, glutamine and digoxin was measured in the presence and absence of Iiposome formulations to establish changes in absorption resulting from the presence of lipid formulations. Incorporation of the four hydroxybenzoates was shown to be influenced by a number of factors, including liposome composition and drug conformation. Methyl hydroxybenzo.ate (MP) was incorporated into the bilayer most effectively with percentage incorporation of 68% compared to 45% for butyl hydroxybenzoate (BP), despite its increased Iipophilicity. This was attributed to the decreased packing ability of BP within the hydrocarbon core of the lipid bilayer compared to MP. Release studies also suggested that the smaller MP was more strongly incorporated within the lipid bilayer with only 8% of the incorporated solute being released after 48-hours compared to 17% in the case of BP. Model transport studies were seen to reflect drug release profiles from the liposome bilayers with significantly (p < 0.01) higher amounts of BP partitioning from the liposome compared to MP, Caco-2 cell viability was maintained above 86% in the presence of all Iiposome formulations tested indicating the liposome formulations are non-toxic towards Caco-2 cells. Paracellular (apical-to-basolateral) transport of mannitol was significantly increased in the presence of DSPC, PC / DSPC:Cholesterol (16:4 µM; 1000 µg). Glutamine uptake and transport via the carrier-mediated route was Significantly (p < 0.01) increased in the presence of PC I DSPC:Cholesterol (16:0; 16:4 µM). Digoxin apical-to-basolateral transport was significantly increased (p < 0,01) in the presence of PC / DSPC:Cholesterol (16:0; 16:4 µM); thus reducing digoxin efflux via P-glycoprotein. In contrast, PC:ChoJesterol (16:0; 16:4 µM) significantly (p < 0.01) decreased propranolol uptake via the passive transcellular route. Bi-directional transport of propranolol was significantly (p < 0,01) decreased in the presence of PC/DSPC:Cholesterol (16:0; 16:4 µM). The structure of a solute is an important determinant for the incorporation and release of a solute from liposome formulations. PC, DSPC and cholesterol liposome formulations are nontoxic towards Caco-2 cell monolayers and improved uptake and transport of mannitol, glutamine. and digoxin across Caco-2 cell monolayers; thus providing a potential alternative delivery vehicle.
Resumo:
Substantial altimetry datasets collected by different satellites have only become available during the past five years, but the future will bring a variety of new altimetry missions, both parallel and consecutive in time. The characteristics of each produced dataset vary with the different orbital heights and inclinations of the spacecraft, as well as with the technical properties of the radar instrument. An integral analysis of datasets with different properties offers advantages both in terms of data quantity and data quality. This thesis is concerned with the development of the means for such integral analysis, in particular for dynamic solutions in which precise orbits for the satellites are computed simultaneously. The first half of the thesis discusses the theory and numerical implementation of dynamic multi-satellite altimetry analysis. The most important aspect of this analysis is the application of dual satellite altimetry crossover points as a bi-directional tracking data type in simultaneous orbit solutions. The central problem is that the spatial and temporal distributions of the crossovers are in conflict with the time-organised nature of traditional solution methods. Their application to the adjustment of the orbits of both satellites involved in a dual crossover therefore requires several fundamental changes of the classical least-squares prediction/correction methods. The second part of the thesis applies the developed numerical techniques to the problems of precise orbit computation and gravity field adjustment, using the altimetry datasets of ERS-1 and TOPEX/Poseidon. Although the two datasets can be considered less compatible that those of planned future satellite missions, the obtained results adequately illustrate the merits of a simultaneous solution technique. In particular, the geographically correlated orbit error is partially observable from a dataset consisting of crossover differences between two sufficiently different altimetry datasets, while being unobservable from the analysis of altimetry data of both satellites individually. This error signal, which has a substantial gravity-induced component, can be employed advantageously in simultaneous solutions for the two satellites in which also the harmonic coefficients of the gravity field model are estimated.
Resumo:
Diagnosing faults in wastewater treatment, like diagnosis of most problems, requires bi-directional plausible reasoning. This means that both predictive (from causes to symptoms) and diagnostic (from symptoms to causes) inferences have to be made, depending on the evidence available, in reasoning for the final diagnosis. The use of computer technology for the purpose of diagnosing faults in the wastewater process has been explored, and a rule-based expert system was initiated. It was found that such an approach has serious limitations in its ability to reason bi-directionally, which makes it unsuitable for diagnosing tasks under the conditions of uncertainty. The probabilistic approach known as Bayesian Belief Networks (BBNS) was then critically reviewed, and was found to be well-suited for diagnosis under uncertainty. The theory and application of BBNs are outlined. A full-scale BBN for the diagnosis of faults in a wastewater treatment plant based on the activated sludge system has been developed in this research. Results from the BBN show good agreement with the predictions of wastewater experts. It can be concluded that the BBNs are far superior to rule-based systems based on certainty factors in their ability to diagnose faults and predict systems in complex operating systems having inherently uncertain behaviour.
Resumo:
The current optical communications network consists of point-to-point optical transmission paths interconnected with relatively low-speed electronic switching and routing devices. As the demand for capacity increases, then higher speed electronic devices will become necessary. It is however hard to realise electronic chip-sets above 10 Gbit/s, and therefore to increase the achievable performance of the network, electro-optic and all-optic switching and routing architectures are being investigated. This thesis aims to provide a detailed experimental analysis of high-speed optical processing within an optical time division multiplexed (OTDM) network node. This includes the functions of demultiplexing, 'drop and insert' multiplexing, data regeneration, and clock recovery. It examines the possibilities of combining these tasks using a single device. Two optical switching technologies are explored. The first is an all-optical device known as 'semiconductor optical amplifier-based nonlinear optical loop mirror' (SOA-NOLM). Switching is achieved by using an intense 'control' pulse to induce a phase shift in a low-intensity signal propagating through an interferometer. Simultaneous demultiplexing, data regeneration and clock recovery are demonstrated for the first time using a single SOA-NOLM. The second device is an electroabsorption (EA) modulator, which until this thesis had been used in a uni-directional configuration to achieve picosecond pulse generation, data encoding, demultiplexing, and 'drop and insert' multiplexing. This thesis presents results on the use of an EA modulator in a novel bi-directional configuration. Two independent channels are demultiplexed from a high-speed OTDM data stream using a single device. Simultaneous demultiplexing with stable, ultra-low jitter clock recovery is demonstrated, and then used in a self-contained 40 Gbit/s 'drop and insert' node. Finally, a 10 GHz source is analysed that exploits the EA modulator bi-directionality to increase the pulse extinction ratio to a level where it could be used in an 80 Gbit/s OTDM network.
Resumo:
Agent-based technology is playing an increasingly important role in today’s economy. Usually a multi-agent system is needed to model an economic system such as a market system, in which heterogeneous trading agents interact with each other autonomously. Two questions often need to be answered regarding such systems: 1) How to design an interacting mechanism that facilitates efficient resource allocation among usually self-interested trading agents? 2) How to design an effective strategy in some specific market mechanisms for an agent to maximise its economic returns? For automated market systems, auction is the most popular mechanism to solve resource allocation problems among their participants. However, auction comes in hundreds of different formats, in which some are better than others in terms of not only the allocative efficiency but also other properties e.g., whether it generates high revenue for the auctioneer, whether it induces stable behaviour of the bidders. In addition, different strategies result in very different performance under the same auction rules. With this background, we are inevitably intrigued to investigate auction mechanism and strategy designs for agent-based economics. The international Trading Agent Competition (TAC) Ad Auction (AA) competition provides a very useful platform to develop and test agent strategies in Generalised Second Price auction (GSP). AstonTAC, the runner-up of TAC AA 2009, is a successful advertiser agent designed for GSP-based keyword auction. In particular, AstonTAC generates adaptive bid prices according to the Market-based Value Per Click and selects a set of keyword queries with highest expected profit to bid on to maximise its expected profit under the limit of conversion capacity. Through evaluation experiments, we show that AstonTAC performs well and stably not only in the competition but also across a broad range of environments. The TAC CAT tournament provides an environment for investigating the optimal design of mechanisms for double auction markets. AstonCAT-Plus is the post-tournament version of the specialist developed for CAT 2010. In our experiments, AstonCAT-Plus not only outperforms most specialist agents designed by other institutions but also achieves high allocative efficiencies, transaction success rates and average trader profits. Moreover, we reveal some insights of the CAT: 1) successful markets should maintain a stable and high market share of intra-marginal traders; 2) a specialist’s performance is dependent on the distribution of trading strategies. However, typical double auction models assume trading agents have a fixed trading direction of either buy or sell. With this limitation they cannot directly reflect the fact that traders in financial markets (the most popular application of double auction) decide their trading directions dynamically. To address this issue, we introduce the Bi-directional Double Auction (BDA) market which is populated by two-way traders. Experiments are conducted under both dynamic and static settings of the continuous BDA market. We find that the allocative efficiency of a continuous BDA market mainly comes from rational selection of trading directions. Furthermore, we introduce a high-performance Kernel trading strategy in the BDA market which uses kernel probability density estimator built on historical transaction data to decide optimal order prices. Kernel trading strategy outperforms some popular intelligent double auction trading strategies including ZIP, GD and RE in the continuous BDA market by making the highest profit in static games and obtaining the best wealth in dynamic games.
Resumo:
Transportation service operators are witnessing a growing demand for bi-directional movement of goods. Given this, the following thesis considers an extension to the vehicle routing problem (VRP) known as the delivery and pickup transportation problem (DPP), where delivery and pickup demands may occupy the same route. The problem is formulated here as the vehicle routing problem with simultaneous delivery and pickup (VRPSDP), which requires the concurrent service of the demands at the customer location. This formulation provides the greatest opportunity for cost savings for both the service provider and recipient. The aims of this research are to propose a new theoretical design to solve the multi-objective VRPSDP, provide software support for the suggested design and validate the method through a set of experiments. A new real-life based multi-objective VRPSDP is studied here, which requires the minimisation of the often conflicting objectives: operated vehicle fleet size, total routing distance and the maximum variation between route distances (workload variation). The former two objectives are commonly encountered in the domain and the latter is introduced here because it is essential for real-life routing problems. The VRPSDP is defined as a hard combinatorial optimisation problem, therefore an approximation method, Simultaneous Delivery and Pickup method (SDPmethod) is proposed to solve it. The SDPmethod consists of three phases. The first phase constructs a set of diverse partial solutions, where one is expected to form part of the near-optimal solution. The second phase determines assignment possibilities for each sub-problem. The third phase solves the sub-problems using a parallel genetic algorithm. The suggested genetic algorithm is improved by the introduction of a set of tools: genetic operator switching mechanism via diversity thresholds, accuracy analysis tool and a new fitness evaluation mechanism. This three phase method is proposed to address the shortcoming that exists in the domain, where an initial solution is built only then to be completely dismantled and redesigned in the optimisation phase. In addition, a new routing heuristic, RouteAlg, is proposed to solve the VRPSDP sub-problem, the travelling salesman problem with simultaneous delivery and pickup (TSPSDP). The experimental studies are conducted using the well known benchmark Salhi and Nagy (1999) test problems, where the SDPmethod and RouteAlg solutions are compared with the prominent works in the VRPSDP domain. The SDPmethod has demonstrated to be an effective method for solving the multi-objective VRPSDP and the RouteAlg for the TSPSDP.
Resumo:
Optical phase conjugation (OPC) of a polarization-multiplexed comb of 10x114Gb/s DP-QPSK signals has been demonstrated for the first time, occupying a spectral bandwidth of >1THz (~9nm). The nonlinear element employed for the OPC was highly nonlinear fiber (HNLF) optimized for the suppression of stimulated Brillouin scattering (SBS) and configured in a bi-directional loop offering polarization diversity. Pump power (each way about the loop) and input signal power to the OPC subsystem were optimized at 29.7dBm and + 3dBm respectively producing a Q2 penalty of ≤0.9dB over all conjugate wavelengths, polarizations and output OSNR (up to 20dB).
Resumo:
We present a study on the potential use of ultra-longlasercavities for unrepeateredfiber communication, based on the theory of nonlinearity management. A comparison is offered between the performance of ultra-longlasers and standard bi-directional distributed amplification schemes in nonrepeated transmission. Links based on both traditional (SMF/DCF) and modern Ultrawave transmissionfibers are considered.
Resumo:
Business decision making depends on financial reporting quality. In identifying the drivers of financial reporting quality, proxied by earnings management (EM), prior literature has drawn attention to the association between corporate EM practices and commitment to corporate social responsibility (CSR). Empirical evidence, however, provides inconclusive results regarding the direction of this association. Using simultaneous equations, we examine the bi-directional CSR-EM relationship in U.S. commercial banks. We demonstrate that, although banks that engage in EM practices are also actively involved in CSR, the reverse relationship is not significant. We provide implications for investors, analysts, business participants and regulators. © 2014 Elsevier Ltd.
Resumo:
Transmission of a net 467-Gb/s PDM-16QAM Nyquist-spaced superchannel is reported with an intra-superchannel net spectral efficiency (SE) of 6.6 (b/s)/Hz, over 364-km SMF-28 ULL ultra-low loss optical fiber, enabled by bi-directional second-order Raman amplification and digital nonlinearity compensation. Multi-channel digital back-propagation (MC-DBP) was applied to compensate for nonlinear interference; an improvement of 2 dB in Q2 factor was achieved when 70-GHz DBP bandwidth was applied, allowing an increase in span length of 37 km.