984 resultados para Bayesian decision boundaries


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: to address the social aspects of pregnancy and the views of pregnant women regarding prenatal assistance in Brazil. Design: this qualitative study was focused on describing the Social Representations of prenatal care held by pregnant women. The discourse of the collective subject (DCS) framework was used to analyse the data collected, within the theoretical background of social representations, as proposed and developed by Serge Moscovici. Participants and setting: 21 pregnant women who were users of the publicly funded Brazilian unified health-care system and resided in the area served by its family health programme in a low- to middle-income neighbourhood on the outskirts of Campo Grande, the capital of the state of Mato Grosso do Sul, in southwestern Brazil. Data were collected by conducting in-depth, face-to-face interviews from January to October 2006. Findings: all participants were married. Formal education of the participants was less than five years in four cases, between five and eight years in six cases, and greater than 11 years in 10 cases. Nine participants had informal jobs and earned up to US$ 200 per month, four paricipants had administrative jobs and earned over US$ 500 per month, and eight participants did not work. No specific racial/ethnic background predominated. Lack of adherence to prenatal care allowed for the identification of two DCS themes: `organisation of prenatal care services` and `lifestyle features`. Key conclusions: the respondents were found to have negative feelings about pregnancy which manifest as many fears, including the fear of harming their children`s health, of being punished during labour, and of being reprimanded by health-care professionals for overlooking their prenatal care, in addition to the insecurity felt towards the infant and self. Implications for practice: the findings reveal that communication between pregnant women and healthcare professionals has been ineffective and that prenatal care has not been effective for the group interviewed-features that are likely to be found among other low- to middle-income groups living elsewhere in Brazil. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivation: Understanding the patterns of association between polymorphisms at different loci in a population ( linkage disequilibrium, LD) is of fundamental importance in various genetic studies. Many coefficients were proposed for measuring the degree of LD, but they provide only a static view of the current LD structure. Generative models (GMs) were proposed to go beyond these measures, giving not only a description of the actual LD structure but also a tool to help understanding the process that generated such structure. GMs based in coalescent theory have been the most appealing because they link LD to evolutionary factors. Nevertheless, the inference and parameter estimation of such models is still computationally challenging. Results: We present a more practical method to build GM that describe LD. The method is based on learning weighted Bayesian network structures from haplotype data, extracting equivalence structure classes and using them to model LD. The results obtained in public data from the HapMap database showed that the method is a promising tool for modeling LD. The associations represented by the learned models are correlated with the traditional measure of LD D`. The method was able to represent LD blocks found by standard tools. The granularity of the association blocks and the readability of the models can be controlled in the method. The results suggest that the causality information gained by our method can be useful to tell about the conservability of the genetic markers and to guide the selection of subset of representative markers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the modeling of a weed infestation risk inference system that implements a collaborative inference scheme based on rules extracted from two Bayesian network classifiers. The first Bayesian classifier infers a categorical variable value for the weed-crop competitiveness using as input categorical variables for the total density of weeds and corresponding proportions of narrow and broad-leaved weeds. The inferred categorical variable values for the weed-crop competitiveness along with three other categorical variables extracted from estimated maps for the weed seed production and weed coverage are then used as input for a second Bayesian network classifier to infer categorical variables values for the risk of infestation. Weed biomass and yield loss data samples are used to learn the probability relationship among the nodes of the first and second Bayesian classifiers in a supervised fashion, respectively. For comparison purposes, two types of Bayesian network structures are considered, namely an expert-based Bayesian classifier and a naive Bayes classifier. The inference system focused on the knowledge interpretation by translating a Bayesian classifier into a set of classification rules. The results obtained for the risk inference in a corn-crop field are presented and discussed. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results of research into the use of the Bellman-Zadeh approach to decision making in a fuzzy environment for solving multicriteria power engineering problems. The application of the approach conforms to the principle of guaranteed result and provides constructive lines in computationally effective obtaining harmonious solutions on the basis of solving associated maxmin problems. The presented results are universally applicable and are already being used to solve diverse classes of power engineering problems. It is illustrated by considering problems of power and energy shortage allocation, power system operation, optimization of network configuration in distribution systems, and energetically effective voltage control in distribution systems. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper proposes a flexible consensus scheme for group decision making, which allows one to obtain a consistent collective opinion, from information provided by each expert in terms of multigranular fuzzy estimates. It is based on a linguistic hierarchical model with multigranular sets of linguistic terms, and the choice of the most suitable set is a prerogative of each expert. From the human viewpoint, using such model is advantageous, since it permits each expert to utilize linguistic terms that reflect more adequately the level of uncertainty intrinsic to his evaluation. From the operational viewpoint, the advantage of using such model lies in the fact that it allows one to express the linguistic information in a unique domain, without losses of information, during the discussion process. The proposed consensus scheme supposes that the moderator can interfere in the discussion process in different ways. The intervention can be a request to any expert to update his opinion or can be the adjustment of the weight of each expert`s opinion. An optimal adjustment can be achieved through the execution of an optimization procedure that searches for the weights that maximize a corresponding soft consensus index. In order to demonstrate the usefulness of the presented consensus scheme, a technique for multicriteria analysis, based on fuzzy preference relation modeling, is utilized for solving a hypothetical enterprise strategy planning problem, generated with the use of the Balanced Scorecard methodology. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results of research related to multicriteria decision making under information uncertainty. The Bell-man-Zadeh approach to decision making in a fuzzy environment is utilized for analyzing multicriteria optimization models (< X, M > models) under deterministic information. Its application conforms to the principle of guaranteed result and provides constructive lines in obtaining harmonious solutions on the basis of analyzing associated maxmin problems. This circumstance permits one to generalize the classic approach to considering the uncertainty of quantitative information (based on constructing and analyzing payoff matrices reflecting effects which can be obtained for different combinations of solution alternatives and the so-called states of nature) in monocriteria decision making to multicriteria problems. Considering that the uncertainty of information can produce considerable decision uncertainty regions, the resolving capacity of this generalization does not always permit one to obtain unique solutions. Taking this into account, a proposed general scheme of multicriteria decision making under information uncertainty also includes the construction and analysis of the so-called < X, R > models (which contain fuzzy preference relations as criteria of optimality) as a means for the subsequent contraction of the decision uncertainty regions. The paper results are of a universal character and are illustrated by a simple example. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a decision-making method for maintenance policy selection of power plants equipment. The method is based on risk analysis concepts. The method first step consists in identifying critical equipment both for power plant operational performance and availability based on risk concepts. The second step involves the proposal of a potential maintenance policy that could be applied to critical equipment in order to increase its availability. The costs associated with each potential maintenance policy must be estimated, including the maintenance costs and the cost of failure that measures the critical equipment failure consequences for the power plant operation. Once the failure probabilities and the costs of failures are estimated, a decision-making procedure is applied to select the best maintenance policy. The decision criterion is to minimize the equipment cost of failure, considering the costs and likelihood of occurrence of failure scenarios. The method is applied to the analysis of a lubrication oil system used in gas turbines journal bearings. The turbine has more than 150 MW nominal output, installed in an open cycle thermoelectric power plant. A design modification with the installation of a redundant oil pump is proposed for lubricating oil system availability improvement. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Safety Instrumented Systems (SIS) are designed to prevent and / or mitigate accidents, avoiding undesirable high potential risk scenarios, assuring protection of people`s health, protecting the environment and saving costs of industrial equipment. The design of these systems require formal methods for ensuring the safety requirements, but according material published in this area, has not identified a consolidated procedure to match the task. This sense, this article introduces a formal method for diagnosis and treatment of critical faults based on Bayesian network (BN) and Petri net (PN). This approach considers diagnosis and treatment for each safety instrumented function (SIF) including hazard and operability (HAZOP) study in the equipment or system under control. It also uses BN and Behavioral Petri net (BPN) for diagnoses and decision-making and the PN for the synthesis, modeling and control to be implemented by Safety Programmable Logic Controller (PLC). An application example considering the diagnosis and treatment of critical faults is presented and illustrates the methodology proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents new insights and novel algorithms for strategy selection in sequential decision making with partially ordered preferences; that is, where some strategies may be incomparable with respect to expected utility. We assume that incomparability amongst strategies is caused by indeterminacy/imprecision in probability values. We investigate six criteria for consequentialist strategy selection: Gamma-Maximin, Gamma-Maximax, Gamma-Maximix, Interval Dominance, Maximality and E-admissibility. We focus on the popular decision tree and influence diagram representations. Algorithms resort to linear/multilinear programming; we describe implementation and experiments. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of Information Technology (IT) outsourcing is relevant because companies are outsourcing their activities more than ever. An important IT outsourcing research area is the decision-making process. In other words, the comprehension of how companies decide about outsourcing their IT operations is relevant from research point of view. Therefore, the objective of this study is to understand the decision-making process used by Brazilian companies when outsourcing their IT operations. An analysis of the literature that refers to this subject showed that six aspects are usually considered by companies on the evaluation of IT outsourcing service alternatives. This research verified how these six aspects are considered by Brazilian companies on IT outsourcing decisions. The survey showed that Brazilian companies consider all the six aspects, but each of them has a different level of importance. The research also grouped the aspects according to their level of importance and interdependency, using factorial analysis to understand the logic behind IT outsourcing decision process. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes the convergence of the constant modulus algorithm (CMA) in a decision feedback equalizer using only a feedback filter. Several works had already observed that the CMA presented a better performance than decision directed algorithm in the adaptation of the decision feedback equalizer, but theoretical analysis always showed to be difficult specially due to the analytical difficulties presented by the constant modulus criterion. In this paper, we surmount such obstacle by using a recent result concerning the CM analysis, first obtained in a linear finite impulse response context with the objective of comparing its solutions to the ones obtained through the Wiener criterion. The theoretical analysis presented here confirms the robustness of the CMA when applied to the adaptation of the decision feedback equalizer and also defines a class of channels for which the algorithm will suffer from ill-convergence when initialized at the origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Joint generalized linear models and double generalized linear models (DGLMs) were designed to model outcomes for which the variability can be explained using factors and/or covariates. When such factors operate, the usual normal regression models, which inherently exhibit constant variance, will under-represent variation in the data and hence may lead to erroneous inferences. For count and proportion data, such noise factors can generate a so-called overdispersion effect, and the use of binomial and Poisson models underestimates the variability and, consequently, incorrectly indicate significant effects. In this manuscript, we propose a DGLM from a Bayesian perspective, focusing on the case of proportion data, where the overdispersion can be modeled using a random effect that depends on some noise factors. The posterior joint density function was sampled using Monte Carlo Markov Chain algorithms, allowing inferences over the model parameters. An application to a data set on apple tissue culture is presented, for which it is shown that the Bayesian approach is quite feasible, even when limited prior information is available, thereby generating valuable insight for the researcher about its experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper applies Hierarchical Bayesian Models to price farm-level yield insurance contracts. This methodology considers the temporal effect, the spatial dependence and spatio-temporal models. One of the major advantages of this framework is that an estimate of the premium rate is obtained directly from the posterior distribution. These methods were applied to a farm-level data set of soybean in the State of the Parana (Brazil), for the period between 1994 and 2003. The model selection was based on a posterior predictive criterion. This study improves considerably the estimation of the fair premium rates considering the small number of observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the years, crop insurance programs became the focus of agricultural policy in the USA, Spain, Mexico, and more recently in Brazil. Given the increasing interest in insurance, accurate calculation of the premium rate is of great importance. We address the crop-yield distribution issue and its implications in pricing an insurance contract considering the dynamic structure of the data and incorporating the spatial correlation in the Hierarchical Bayesian framework. Results show that empirical (insurers) rates are higher in low risk areas and lower in high risk areas. Such methodological improvement is primarily important in situations of limited data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was the design of a set of benzofuroxan derivatives as antimicrobial agents exploring the physicochemical properties of the related substituents. Topliss` decision tree approach was applied to select the substituent groups. Hierarchical cluster analysis was also performed to emphasize natural clusters and patterns. The compounds were obtained using two synthetic approaches for reducing the synthetic steps as well as improving the yield. The minimal inhibitory concentration method was employed to evaluate the activity against multidrug-resistant Staphylococcus aureus strains. The most active compound was 4-nitro-3-(trifluoromethyl)[N`-(benzofuroxan-5-yl) methylene] benzhydrazide (MIC range 12.7-11.4 mu g/mL), pointing out that the antimicrobial activity was indeed influenced by the hydrophobic and electron-withdrawing property of the substituent groups 3-CF(3) and 4-NO(2), respectively. (C) 2011 Elsevier Ltd. All rights reserved.