962 resultados para Bark beetles
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The cosmopolitan beetles of the Paederus genus (potos) cause a severe dermatitis when the insect is crushed against the skin of exposed areas (the cervical region is the most affected). Toxins (pederin and others) from the hemolymph of the insect cause plaques and/or bizarre, linear lesions with erythema, edema, blisters, pustules, crusts and exulcerations. There may be a burning sensation and severe conjunctivitis. Lesions disappear after 10 days and may leave hyperchromic macules. Treatment is made with topical corticosteroids and intensive washing.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Uncaria tomentosa is a medicinal plant used in folk medicine by Amazon tribes. In this study the constituents of aqueous extract of U. tomentosa bark were quantified by chromatographic technique and its lethal concentration 50 (48 h) in Hyphessobrycon eques was determined. The chromatography showed high levels of oxindole alkaloids, quinovic acid glycosides, and low molecular weight polyphenols. The CL50 48 h was 1816 mg/L. Fish showed behavior changes at concentrations above 2000 mg/L, accompanied by a significant decrease of dissolved oxygen. At the highest concentration 100% mortality was observed attributed to oxygen reduction by the amount of oxindole alkaloids, polyphenols accumulation of the extract in the gills, and the interaction of these compounds with dopamine. In conclusion, the aqueous extract of U. tomentosa did not alter the chemical components and it was shown that U. tomentosa has low toxicity to H. eques; therefore, it can be used safely in this species.
Resumo:
A composição e estrutura da comunidade epifítica herbácea de fuste baixo, assim como sua distribuição vertical, foram estudadas. O DAP de hospedeiros arbóreos e o tipo de casca influenciam a riqueza e abundância dessas espécies em um trecho de floresta de terra firme na Amazônia Oriental (1º57’36"S 51º36’55"W). Foram identificadas, no total, 37 espécies herbáceas epifíticas, sendo 60% delas Araceae. A riqueza de espécies e a abundância de herbáceas epifíticas mostraram tendência de correlação positiva com o tamanho de hospedeiros arbóreos e nenhuma relação com o tipo de casca. Correlação positiva baixa pode ser um subproduto da predominância de árvores de menor diâmetro na amostragem em vez de refletir relação neutra. A ausência de relações com o tipo de casca deve ser parcialmente explicada pelo grande número de hemiepífitas secundárias, generalistas, e também refletir a ausência de substratos adequados em árvores de menor diâmetro.
Resumo:
The mating behavior of the coffee berry borer, (Ferrari), was observed under laboratory conditions. Pairs of adult virgin male and female beetles were placed in the wells of a polystyrene microtiter plate, one pair per well. The mating activity of each pair was recorded for 24 h. The mating behavior of the coffee berry borer was similar to that of other Scolytinae and was clearly divided into precopulatory, copulatory and postcopulatory phases. The beetles started to mate within a few hours of emergence. Repeated mating occurred during the 24-hour period and increased in frequency with age. However, we cannot address multiple matings in , since we did not simulate the female-biased sex ratio of this species and the experimental design did not allow females to avoid additional mating attempts by males. In addition, further studies are necessary that focus on the effectiveness of sperm transmission and direct and indirect effects of multiple matings on the ei females and their offspring.
Resumo:
Abstract Background In recent years, the growing demand for biofuels has encouraged the search for different sources of underutilized lignocellulosic feedstocks that are available in sufficient abundance to be used for sustainable biofuel production. Much attention has been focused on biomass from grass. However, large amounts of timber residues such as eucalyptus bark are available and represent a potential source for conversion to bioethanol. In the present paper, we investigate the effects of a delignification process with increasing sodium hydroxide concentrations, preceded or not by diluted acid, on the bark of two eucalyptus clones: Eucalyptus grandis (EG) and the hybrid, E. grandis x urophylla (HGU). The enzymatic digestibility and total cellulose conversion were measured, along with the effect on the composition of the solid and the liquor fractions. Barks were also assessed using Fourier-transform infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance (NMR), X-Ray diffraction, and scanning electron microscopy (SEM). Results Compositional analysis revealed an increase in the cellulose content, reaching around 81% and 76% of glucose for HGU and EG, respectively, using a two-step treatment with HCl 1%, followed by 4% NaOH. Lignin removal was 84% (HGU) and 79% (EG), while the hemicellulose removal was 95% and 97% for HGU and EG, respectively. However, when we applied a one-step treatment, with 4% NaOH, higher hydrolysis efficiencies were found after 48 h for both clones, reaching almost 100% for HGU and 80% for EG, in spite of the lower lignin and hemicellulose removal. Total cellulose conversion increased from 5% and 7% to around 65% for HGU and 59% for EG. NMR and FTIR provided important insight into the lignin and hemicellulose removal and SEM studies shed light on the cell-wall unstructuring after pretreatment and lignin migration and precipitation on the fibers surface, which explain the different hydrolysis rates found for the clones. Conclusion Our results show that the single step alkaline pretreatment improves the enzymatic digestibility of Eucalyptus bark. Furthermore, the chemical and physical methods combined in this study provide a better comprehension of the pretreatment effects on cell-wall and the factors that influence enzymatic digestibility of this forest residue.
Resumo:
Waste products from the forest industry are to be spread in forests in Sweden to counteract nutrient depletion due to whole tree harvesting. This may increase the bioavailability of calcium (Ca) and heavy metals, such as cadmium (Cd), copper (Cu) and zinc (Zn) in forest soils. Heavy metals, like Cd, have already been enriched in forest soils in Sweden, due to deposition of air pollutions, and acidification of forest soils has increased the bioavailability of toxic metals for plant uptake. Changes in the bioavailability of metals may be reflected in altered accumulation of Ca and heavy metals in forest trees, changes in tree growth, including wood formation, and altered tree species composition. This thesis aims at examining: A) if inter- or intra- specific differences in sensitivity to Cd occur in the most common tree species of Sweden, and if so, to study if these can be explained by the uptake and distribution of Cd within the plant: B) how elevated levels of Ca, Cd, Cu and Zn affect the accumulation and attachment of metals in bark and wood, and growth of young Norway spruce (Picea abies): C) how waste products from the forest industry, such as wood ash, influence the contents of Ca, Cd, Cu and Zn in wood and bark of young Norway spruce. Sensitivity to Cd, and its uptake and distribution, in seedlings of Picea abies, Pinus sylvestris and Betula pendula from three regions (southern, central and northern parts) of Sweden, treated with varying concentrations of Cd, were compared. Differences in root sensitivity to Cd both among and within woody species were found and the differences could to some extent be explained by differences in uptake and translocation of Cd. The root sensitivity assays revealed that birch was the least, and spruce the most, sensitive species, both to the external and to tissue levels of Cd. The central ecotype of the species tested tended to be most Cd resistant. The radial distribution, accumulation and attachment of, and interactions between Ca and heavy metals in stems of two-year-old Norway spruce trees treated with elevated levels of Cd, Cu, Zn and/or Ca, were investigated. Further, the influence of these metals on growth, and on root metal content, was examined. Accumulation of the metals was enhanced in wood, bark and/or roots at elevated levels of the metal in question. Even at low levels of the metals, similar to after application of wood ash, an enhanced accumulation was apparent in wood and/or bark, except for Cd. The increased accumulation of Zn and Cu in the stem did not affect the growth. However, Cu decreased the accumulation of Ca in wood. Higher levels of Cu and Cd reduced the stem diameter and the toxic effect was associated with a reduced Ca content in wood. Copper and Cd also decreased the accumulation of Zn in the stem. On the other hand, elevated levels of Ca increased the stem diameter and reduced the accumulation of Cd, Cu, Zn and Mn in wood and/or bark. When metals interacted with each other the firmly bound fraction of the metal reduced was in almost all cases not affected. As an exception, Cd decreased the firmly bound fraction of Zn in the stem. The influence of pellets of wood ash (ash) or a mixture of wood ash and green liquor dregs (ash+GLD), in the amount of 3000 kg ha-1, on the contents of Ca, Cd, Cu and Zn in wood and bark of young Norway spruce in the field was examined. The effect of the treatments on the metal content of bark and wood was larger after 3 years than after 6 years. Treatment with ash+GLD had less effect on the heavy metal content of bark and wood than treatment with ash alone. The ash treatment increased the Cu and Zn content in bark and wood, respectively, after 3 years, and decreased the Ca content of the wood after 6 years. The ash+GLD treatment increased the Ca content of the bark and decreased the Zn content of bark and wood after 3 years. Both treatments reduced, or tended to decrease, the Cd content in wood and bark at both times. To conclude, small changes in the bioavailability of Ca, Cu, Cd and Zn in forest soils, such as after spreading pellets of wood ash or a mixture of wood ash and green liquor dregs from the forest industry, will be reflected in an altered accumulation of metals in wood and bark of Norway spruce. It will not only be reflected in changed accumulation of those metals in which bioavailability in the soil has been enhanced, but also of other metals, probably partly due to interactions between metals. When metals interact the exchangeable bound fraction of the metal reduced is suggested to be the main fraction affected. The small alterations in accumulation of metals should not affect the growth of Norway spruce, especially since the changes in accumulation of metals are low, and further since these decrease over time. However, as an exception, one positive and maybe persistent effect of the waste products is that these may decrease the accumulation of Cd in Norway spruce, which partly may be explained by competition with Ca for uptake, translocation and binding. A decreased accumulation of Cd in Norway spruce will probably affect the trees positively, since Norway spruce is one of the most sensitive species to Cd of the forest trees in Sweden. Thus, spreading of waste products from the forest industry may be a solution to decrease the accumulation of Cd in Norway spruce. In a longer perspective, this will decrease the risk of Cd altering the tree species composition of the forest ecosystem. An elevated bioavailability of Ca in forest soils will, in addition to Cd, probably also decrease the accumulation of other less competitive heavy metals, like Zn and Mn, in the stem.
Resumo:
The transmission of honeybee pathogens by free-flying pests, such as small hive beetles (=SHB), would be independent of bees and beekeepers and thereby constitute a new challenge for pathogen control measures. Here we show that larval and adult SHB become contaminated with Paenibacillus larvae spores when exposed to honeybee brood combs with clinical American foulbrood (=AFB) symptoms in the laboratory. This contamination persists in pupae and newly emerged adults. After exposure to contaminated adult SHB, honeybee field colonies showed higher numbers of P. larvae spores in worker and honey samples after five weeks. Despite these results, the rather low number of P. larvae spores on adult SHB suggests that clinical AFB outbreaks are not likely. However, even small spore numbers can be sufficient to spread P. larvae. Therefore, our data clearly show that SHB are vectors of P. larvae. We suggest considering the role of SHB in AFB control in areas where both pests are established.
Resumo:
Background Local Mate Competition (LMC) theory predicts a female should produce a more female-biased sex ratio if her sons compete with each other for mates. Because it provides quantitative predictions that can be experimentally tested, LMC is a textbook example of the predictive power of evolutionary theory. A limitation of many earlier studies in the field is that the population structure and mating system of the studied species are often estimated only indirectly. Here we use microsatellites to characterize the levels of inbreeding of the bark beetle Xylosandrus germanus, a species where the level of LMC is expected to be high. Results For three populations studied, genetic variation for our genetic markers was very low, indicative of an extremely high level of inbreeding (FIS = 0.88). There was also strong linkage disequilibrium between microsatellite loci and a very strong genetic differentiation between populations. The data suggest that matings among non-siblings are very rare (3%), although sex ratios from X. germanus in both the field and the laboratory have suggested more matings between non-sibs, and so less intense LMC. Conclusions Our results confirm that caution is needed when inferring mating systems from sex ratio data, especially when a lack of biological detail means the use of overly simple forms of the model of interest.