332 resultados para BRST quantization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The singularity in the Hawking-Turok model of open inflation has some appealing properties, such as the fact that its action is integrable. Also, if one thinks of the singularity as the boundary of spacetime, then the Gibbons-Hawking term is nonvanishing and finite. Here, we consider a model where the gravitational and scalar fields are coupled to a dynamical membrane. The singular instanton can then be obtained as the limit of a family of no-boundary solutions where both the geometry and the scalar field are regular. Using this procedure, the contribution of the singularity to the Euclidean action is just 1/3 of the Gibbons-Hawking term. Unrelated to this issue, we also point out that the singularity acts as a reflecting boundary for scalar perturbations and gravity waves. Therefore, the quantization of cosmological perturbations seems to be well posed in this background.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In inflationary cosmological models driven by an inflaton field the origin of the primordial inhomogeneities which are responsible for large-scale structure formation are the quantum fluctuations of the inflaton field. These are usually calculated using the standard theory of cosmological perturbations, where both the gravitational and the inflaton fields are linearly perturbed and quantized. The correlation functions for the primordial metric fluctuations and their power spectrum are then computed. Here we introduce an alternative procedure for calculating the metric correlations based on the Einstein-Langevin equation which emerges in the framework of stochastic semiclassical gravity. We show that the correlation functions for the metric perturbations that follow from the Einstein-Langevin formalism coincide with those obtained with the usual quantization procedures when the scalar field perturbations are linearized. This method is explicitly applied to a simple model of chaotic inflation consisting of a Robertson-Walker background, which undergoes a quasi-de Sitter expansion, minimally coupled to a free massive quantum scalar field. The technique based on the Einstein-Langevin equation can, however, deal naturally with the perturbations of the scalar field even beyond the linear approximation, as is actually required in inflationary models which are not driven by an inflaton field, such as Starobinsky¿s trace-anomaly driven inflation or when calculating corrections due to nonlinear quantum effects in the usual inflaton driven models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peer-reviewed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We reconsider a model of two relativistic particles interacting via a multiplicative potential, as an example of a simple dynamical system with sectors, or branches, with different dynamics and degrees of freedom. The presence or absence of sectors depends on the values of rest masses. Some aspects of the canonical quantization are described. The model could be interpreted as a bigravity model in one dimension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study all the symmetries of the free Schr odinger equation in the non-commu- tative plane. These symmetry transformations form an infinite-dimensional Weyl algebra that appears naturally from a two-dimensional Heisenberg algebra generated by Galilean boosts and momenta. These infinite high symmetries could be useful for constructing non-relativistic interacting higher spin theories. A finite-dimensional subalgebra is given by the Schröodinger algebra which, besides the Galilei generators, contains also the dilatation and the expansion. We consider the quantization of the symmetry generators in both the reduced and extended phase spaces, and discuss the relation between both approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study all the symmetries of the free Schrödinger equation in the non-commu- tative plane. These symmetry transformations form an infinite-dimensional Weyl algebra that appears naturally from a two-dimensional Heisenberg algebra generated by Galilean boosts and momenta. These infinite high symmetries could be useful for constructing non-relativistic interacting higher spin theories. A finite-dimensional subalgebra is given by the Schröodinger algebra which, besides the Galilei generators, contains also the dilatation and the expansion. We consider the quantization of the symmetry generators in both the reduced and extended phase spaces, and discuss the relation between both approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of selecting anappropriate wavelet filter is always present in signal compression based on thewavelet transform. In this report, we propose a method to select a wavelet filter from a predefined set of filters for the compression of spectra from a multispectral image. The wavelet filter selection is based on the Learning Vector Quantization (LVQ). In the training phase for the test images, the best wavelet filter for each spectrum has been found by a careful compression-decompression evaluation. Certain spectral features are used in characterizing the pixel spectra. The LVQ is used to form the best wavelet filter class for different types of spectra from multispectral images. When a new image is to be compressed, a set of spectra from that image is selected, the spectra are classified by the trained LVQand the filter associated to the largest class is selected for the compression of every spectrum from the multispectral image. The results show, that almost inevery case our method finds the most suitable wavelet filter from the pre-defined set for the compression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Technological progress has made a huge amount of data available at increasing spatial and spectral resolutions. Therefore, the compression of hyperspectral data is an area of active research. In somefields, the original quality of a hyperspectral image cannot be compromised andin these cases, lossless compression is mandatory. The main goal of this thesisis to provide improved methods for the lossless compression of hyperspectral images. Both prediction- and transform-based methods are studied. Two kinds of prediction based methods are being studied. In the first method the spectra of a hyperspectral image are first clustered and and an optimized linear predictor is calculated for each cluster. In the second prediction method linear prediction coefficients are not fixed but are recalculated for each pixel. A parallel implementation of the above-mentioned linear prediction method is also presented. Also,two transform-based methods are being presented. Vector Quantization (VQ) was used together with a new coding of the residual image. In addition we have developed a new back end for a compression method utilizing Principal Component Analysis (PCA) and Integer Wavelet Transform (IWT). The performance of the compressionmethods are compared to that of other compression methods. The results show that the proposed linear prediction methods outperform the previous methods. In addition, a novel fast exact nearest-neighbor search method is developed. The search method is used to speed up the Linde-Buzo-Gray (LBG) clustering method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this thesis is to present a new approach to the lossy compression of multispectral images. Proposed algorithm is based on combination of quantization and clustering. Clustering was investigated for compression of the spatial dimension and the vector quantization was applied for spectral dimension compression. Presenting algo¬rithms proposes to compress multispectral images in two stages. During the first stage we define the classes' etalons, another words to each uniform areas are located inside the image the number of class is given. And if there are the pixels are not yet assigned to some of the clusters then it doing during the second; pass and assign to the closest eta¬lons. Finally a compressed image is represented with a flat index image pointing to a codebook with etalons. The decompression stage is instant too. The proposed method described in this paper has been tested on different satellite multispectral images from different resources. The numerical results and illustrative examples of the method are represented too.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis is studied the influence of uniaxial deformation of GaAs/AlGaAs quantum well structures to photoluminescence. Uniaxial deformation was applied along [110] and polarization ratio of photoluminescence at T = 77 K and 300 K was measured. Also the physical origin of photoluminescence lines in spectrum was determined and the energy band splitting value between states of heavy and light holes was estimated. It was found that the dependencies of polarization ratio on uniaxial deformation for bulk GaAs and GaAs/AlGaAs are different. Two observed lines in photoluminescence spectrum are induced by free electron recombination to energy sublevels of valence band corresponding to heavy and light holes. Those sublevels are splited due to the combination of size quantization and external pressure. The quantum splitting energy value was estimated. Also was shown a method, which allows to determine the energy splitting value of sublevels at room temperature and at comparatively low uniaxial deformation, when the other method for determining of the splitting becomes impossible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quantum harmonic oscillator is described by the Hermite equation.¹ The asymptotic solution is predominantly used to obtain its analytical solutions. Wave functions (solutions) are quadratically integrable if taken as the product of the convergent asymptotic solution (Gaussian function) and Hermite polynomial,¹ whose degree provides the associated quantum number. Solving it numerically, quantization is observed when a control real variable is "tuned" to integer values. This can be interpreted by graphical reading of Y(x) and |Y(x)|², without other mathematical analysis, and prove useful for teaching fundamentals of quantum chemistry to undergraduates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigation of galvanomagnetic effects in nanostructure GaAs/Mn/GaAs/In0.15Ga0.85As/ GaAs is presented. This nanostructure is classified as diluted magnetic semiconductor (DMS). Temperature dependence of transverse magnetoresistivity of the sample was studied. The anomalous Hall effect was detected and subtracted from the total Hall component. Special attention was paid to the measurements of Shubnikov-de Haas oscillations, which exists only in the case of magnetic field aligned perpendicularly to the plane of the sample. This confirms two-dimensional character of the hole energy spectrum in the quantum well. Such important characteristics as cyclotron mass, the Fermi energy and the Dingle temperature were calculated, using experimental data of Shubnikov-de Haas oscillations. The hole concentration and hole mobility in the quantum well also were estimated for the sample. At 4.2 K spin splitting of the maxima of transverse resistivity was observed and g-factor was calculated for that case. The values of the Dingle temperatures were obtained by two different approaches. From the comparison of these values it was concluded that the broadening of Landau levels in the investigated structure is mainly defined by the scattering of charge carriers on the defects of the crystal lattice

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Object detection is a fundamental task of computer vision that is utilized as a core part in a number of industrial and scientific applications, for example, in robotics, where objects need to be correctly detected and localized prior to being grasped and manipulated. Existing object detectors vary in (i) the amount of supervision they need for training, (ii) the type of a learning method adopted (generative or discriminative) and (iii) the amount of spatial information used in the object model (model-free, using no spatial information in the object model, or model-based, with the explicit spatial model of an object). Although some existing methods report good performance in the detection of certain objects, the results tend to be application specific and no universal method has been found that clearly outperforms all others in all areas. This work proposes a novel generative part-based object detector. The generative learning procedure of the developed method allows learning from positive examples only. The detector is based on finding semantically meaningful parts of the object (i.e. a part detector) that can provide additional information to object location, for example, pose. The object class model, i.e. the appearance of the object parts and their spatial variance, constellation, is explicitly modelled in a fully probabilistic manner. The appearance is based on bio-inspired complex-valued Gabor features that are transformed to part probabilities by an unsupervised Gaussian Mixture Model (GMM). The proposed novel randomized GMM enables learning from only a few training examples. The probabilistic spatial model of the part configurations is constructed with a mixture of 2D Gaussians. The appearance of the parts of the object is learned in an object canonical space that removes geometric variations from the part appearance model. Robustness to pose variations is achieved by object pose quantization, which is more efficient than previously used scale and orientation shifts in the Gabor feature space. Performance of the resulting generative object detector is characterized by high recall with low precision, i.e. the generative detector produces large number of false positive detections. Thus a discriminative classifier is used to prune false positive candidate detections produced by the generative detector improving its precision while keeping high recall. Using only a small number of positive examples, the developed object detector performs comparably to state-of-the-art discriminative methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le présent mémoire comprend un survol des principales méthodes de rendu en demi-tons, de l’analog screening à la recherche binaire directe en passant par l’ordered dither, avec une attention particulière pour la diffusion d’erreur. Ces méthodes seront comparées dans la perspective moderne de la sensibilité à la structure. Une nouvelle méthode de rendu en demi-tons par diffusion d’erreur est présentée et soumise à diverses évaluations. La méthode proposée se veut originale, simple, autant à même de préserver le caractère structurel des images que la méthode à l’état de l’art, et plus rapide que cette dernière par deux à trois ordres de magnitude. D’abord, l’image est décomposée en fréquences locales caractéristiques. Puis, le comportement de base de la méthode proposée est donné. Ensuite, un ensemble minutieusement choisi de paramètres permet de modifier ce comportement de façon à épouser les différents caractères fréquentiels locaux. Finalement, une calibration détermine les bons paramètres à associer à chaque fréquence possible. Une fois l’algorithme assemblé, toute image peut être traitée très rapidement : chaque pixel est attaché à une fréquence propre, cette fréquence sert d’indice pour la table de calibration, les paramètres de diffusion appropriés sont récupérés, et la couleur de sortie déterminée pour le pixel contribue en espérance à souligner la structure dont il fait partie.