261 resultados para BOROHYDRIDE ELECTROOXIDATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrospun carbon nanofiber-supported bimetallic PtxAu100-x electrocatalysts (PtxAu100-x/CNF) were prepared by electrochemical codeposition method. The composition of PtAu bimetallic nanoparticles could be controlled by varying the ratio of H2PtCl6 and HAuCl4. Scanning electron microscopy images showed that bimetallic nanoparticles had coarse surface morphology with high electrochemically active surface areas. X-ray diffraction analysis testified the formation of PtAu alloys. PtxAu100-x/CNF electrocatalysts exhibited improved electrocatalytic activities towards formic acid oxidation by providing the selectivity of the reaction via dehydrogenation pathway and suppressing the formation/adsorption of poisoning CO intermediate, indicating that PtxAu100-x/CNF is promising electrocatalyst in direct formic acid fuel cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A modified impregnation method was used to prepare highly dispersive carbon-supported PtRu catalyst (PtRu/C). Two modifications to the conventional impregnation method were performed: one was to precipitate the precursors ((NH4)(2)PtCl6 and Ru(OH)(3)) on the carbon support before metal reduction: the other was to add a buffer into the synthetic solution to stabilize the pH. The prepared catalyst showed a much higher activity for methanol electro-oxidation than a catalyst prepared by the conventional impregnation method. even higher than that of current commercially available, state-of-the-art catalysts. The morphology of the prepared catalyst was characterized using TEM and XRD measurements to determine particle sizes, alloying degree, and lattice parameters. Electrochemical methods were also used to ascertain the electrochemical active surface area and the specific activity of the catalyst.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidation of formic acid at the Pd/C catalyst electrode is a completely irreversible kinetic process with the reaction order of 1.0. The oxidation rate of formic acid is increased with increasing the concentration of formic acid and is decreased with increasing H+ concentration. The apparent negative reaction order with respect to H+ is about -0.18 or -0.04 in H2SO4 or HClO4 solution respectively, because bisulfate anions would inhibit formic acid oxidation at some extent. The kinetic parameters, charge transfer coefficient and the diffusion coefficient of formic acid were obtained under the quasi steady-state conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The PtRu/C electrocatalyst with high loading (PtRu of 60 wt%) was prepared by synergetic effect of ultrasonic radiation and mechanical stirring. Physicochemical characterizations show that the size of PtRu particles of as-prepared PtRu/C catalyst is only several nanometers (2-4 nm), and the PtRu nanoparticles were homogeneously dispersed on carbon surface. Electrochemistry and single passive direct methanol fuel cell (DMFC) tests indicate that the as-prepared PtRu/C electrocatalyst possessed larger electrochemical active surface (EAS) area and enhanced electrocatalytic activity for methanol oxidation reaction (MOR). The enhancement could be attributed to the synergetic effect of ultrasound radiation and mechanical stirring, which can avoid excess concentration of partial solution and provide a uniform environment for the nucleation and growth of metal particles simultaneously hindering the agglomeration of PtRu particles on carbon surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple and environment friendly chemical route for detecting latent fingermarks by one-step single-metal nanoparticles deposition method (SND) was achieved successfully on several non-porous items. Gold nanoparticles (AuNPs) synthesized using sodium borohydride as reducing agent in the presence of glucose, were used as working solution for latent fingermarks detection. The SND technique just needs one step to obtain clear ridge details in a wide pH range (2.5-5.0), whereas the standard multi-metal deposition (MMD) technique requires six baths in a narrow pH range (2.5-2.8). The SND is very convenient to detect latent fingermarks in forensic scene or laboratory for forensic operators. The SND technique provided sharp and clear development of latent fingermarks, without background staining, dramatically diminished the bath steps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-efficiency nanoelectrocatalyst based on high-density Au/Pt hybrid nanoparticles supported on a silica nanosphere (Au-Pt/SiO2) has been prepared by a facile wet chemical method. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy are employed to characterize the obtained Au-Pt/SiO2. It was found that each hybrid nanosphere is composed of high-density small Au/Pt hybrid nanoparticles with rough surfaces. These small Au/Pt hybrid nanoparticles interconnect and form a porous nanostructure, which provides highly accessible activity sites, as required for high electrocatalytic activity. We suggest that the particular morphology of the AuPt/SiO2 may be the reason for the high catalytic activity. Thus, this hybrid nanomaterial may find a potential application in fuel cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The controllable synthesis of nanosized carbon-supported Pd catalysts through a surface replacement reaction (SRR) method is reported in this paper. Depending on the synthesis conditions the Pd can be formed on Co nanoparticles surface in hollow nanospheres or nanoparticles structures. Citrate anion acts as a stabilizer for the nanostructures, and protonation of the third carboxyl anion and hence the nanostructure and size of the resulting catalysts are controlled via the pH of the synthesis solution. Pd hollow nanospheres, containing smaller Pd nanoparticles, supported on carbon are formed under the condition of pH 9 reaction solution. Meanwhile, highly dispersed carbon-supported Pd nanoparticles can be formed with higher pH (pH >= 10). All catalysts prepared through the SRR method show enhanced activities for the HCOOH electro-oxidation reaction compared to catalysts reduced by NaBH4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, it is reported for the first time that a carbon-supported Au (Au/C) catalyst for the cathodic catalyst in a direct formic acid fuel cell (DFAFC) was prepared using a polyvinyl alcohol (PVA) protection method. The results indicated that for oxygen reduction, the electrocatalytic activity of the Au/C catalyst prepared with the PVA protection method is much better than that of a Au/C catalyst prepared with the pre-precipitation method. This is due to the small average size and low relative crystallinity of the An particles in the Au/C catalyst prepared by the PVA protection method, compared to that of the Au/C catalyst prepared by the pre-precipitation method, illustrating that the average size and the relative crystallinity of the ALL particles has an effect on the electrocatalytic activity of the Au/C catalyst for oxygen reduction. In addition, because An has no electrocatalytic activity for the oxidation of formic acid, the Au/C catalyst possesses a high formic acid tolerance. After the electrocatalytic activity of the Au/C catalyst for the oxygen reduction is improved, it is suitable to be used as the cathodic catalyst in DFAFC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrooxidation of bilirubin (BR) and bovine serum albumin (BSA) complexes was studied by in situ circular dichroism (CD) spectroelectrochemistry. The result showed that the mechanism of the whole electrooxidation process of this complex corresponded to electrochemical processes (EE mechanism) in aqueous solution. Some parameters of the process were obtained by double logarithm method, differential method and nonlinear regression method. In visible region, CD spectra of the two enantiomeric components of the complex and their fraction distribution against applied potentials were obtained by singular value decomposition least-square (SVDLS) method. Meanwhile, the distribution of the five components of secondary structure was also obtained by the same method in far-UV region. The peak potential gotten from EE mechanism corresponds to a turning point for the component transition, beyond which the whole reaction reaches a new equilibrium. Under applied positive potentials, the enantiomeric equilibrium between M and P form is broken and M form transfers to its enantiomer of P, while the fraction of alpha-helix increases and that improves the transition to P form.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrooxidation polymerization of phenothiazine derivatives, including azure A and toluidine blue 0, has been studied at screen-printed carbon electrodes in neutral phosphate buffer. Both compounds yield strongly adsorbed electroactive polymer with reversible behavior and formal potentials closed to 0.04 V at pH 6.9. The modified electrodes exhibited good stability and electrocatalysis for NADH oxidation in phosphate buffer (pH 6.9), with an overpotential of more than 500 mV lower than that of the bare electrodes. Further, the modified screen-printed carbon electrodes were found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 0.5-100 muM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrooxidation of thionine on screen-printed carbon electrode gives rise to the modification of the surface with amino groups for the covalent immobilization of enzymes such as horseradish peroxidase (HRP). The biosensor was constructed using multilayer enzymes which covalently immobilized onto the surface of amino groups modified screen-printed carbon electrode using glutaraldehyde as a bifunctional reagent. The multilayer assemble of HRP has been characterized with the cyclic voltammetry and the faradaic impedance spectroscopy. The H2O2 biosensor exhibited a fast response (2 s) and low detection limit (0.5 muM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrooxidation polymerization of azure B on screen-printed carbon electrodes in neutral phosphate buffer was studied. The poly(azure B) modified electrodes exhibited excellent electrocatalysis and stability for dihydronicotinamide adenine dinucleotide (NADH) oxidation in phosphate buffer (pH 6.9), with an overpotential of more than 400 mV lower than that at the bare electrodes. Different techniques, including cyclic voltammetry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy have been employed to characterize the poly (azure B) film. Furthermore, the modified screen-printed carbon electrodes were found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 0.5 muM to 100 muM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, a new capping agent, cinnamic acid ( CA) was used to synthesize Au nanoparticles (NPs) under ambient conditions. The size of the NPs can be controlled by adjusting the concentration of reductant ( in our experiment sodium borohydride was used) or CA. The CA-stabilized Au NPs can self-assemble into 'nanowire-like' or 'pearl-necklace-like' nanostructures by adjusting the molar ratio of CA to HAuCl4 or by tuning the pH value of the Au colloidal solution. The process of Au NPs self-assembly was investigated by UV - vis spectroscopy and transmission electron microscopy. The results reveal that the induced dipole - dipole interaction is the driving force of Au NP linear assemblies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is suggested that a Pt/C cathodic catalyst for the direct methanol fuel cell (DMFC) can be prepared with a pre-precipitation method, in which, H2PtCl6 is precipitated onto the carbon black as (NH4)(2)PtCl6 before H2PtCl6 is reduced to Pt. The electrocatalytic activity of this Pt/C-A catalyst for oxygen reduction is excellent because the Pt/C catalyst prepared with this pre-precipitation method possesses a small average particle size, low relative crystalinity and a large electrochemically active surface area. In addition, the pre-precipitation method is simple and economical and it can be used to prepare a Pt/C catalyst on a large scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The organic sol method for preparing ultrafine transition metal colloid particles reported for the first time by Bonnemann et al. [H. Bonnemann, W Brijoux, R. Brinkmann, E. Dinjus, T. Jou beta en, B. Korall, Angew. Chem. Int. Ed. Engl., 30 (1991) 1312] has been improved in this paper. The improved organic sol method uses SnCl2 as the reductant and methanol as the organic solvent. Thus, this method is very simple and inexpensive. It was found that the average size of the Pt particles in the Pt/C catalysts can be controlled by adjusting the evaporating temperature of the solvent. Therefore, the Pt/C catalysts prepared by the same method are suitable for evaluating the size effect of the Pt particles on electrocatalytic performance for methanol oxidation. The results of the X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed that when the evaporating temperatures of the solvent are 65, 60, 50, 40, and 30 degrees C, the average sizes of the Pt particles in the Pt/C catalysts prepared are: 2.2, 3.2, 3.8, 4.3, and 4.8 nm, respectively. The X-ray photoelectron spectroscopic (XPS) results demonstrated that the small Pt particles are easily oxidized and the decomposition/adsorption of methanol cannot proceed on the surfaces of Pt oxides.