997 resultados para Automatic weather station


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Ciência do Solo) - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the behavior of large outlet glaciers draining the Greenland Ice Sheet is critical for assessing the impact of climate change on sea level rise. The flow of marine-terminating outlet glaciers is partly governed by calving-related processes taking place at the terminus but is also influenced by the drainage of surface runoff to the bed through moulins, cracks, and other pathways. To investigate the extent of the latter effect, we develop a distributed surface-energy-balance model for Helheim Glacier, East Greenland, to calculate surface melt and thereby estimate runoff. The model is driven by data from an automatic weather station operated on the glacier during the summers of 2007 and 2008, and calibrated with independent measurements of ablation. Modeled melt varies over the deployment period by as much as 68% relative to the mean, with melt rates approximately 77% higher on the lower reaches of the glacier trunk than on the upper glacier. We compare melt variations during the summer season to estimates of surface velocity derived from global positioning system surveys. Near the front of the glacier, there is a significant correlation (on >95% levels) between variations in runoff (estimated from surface melt) and variations in velocity, with a 1 day delay in velocity relative to melt. Although the velocity changes are small compared to accelerations previously observed following some calving events, our findings suggest that the flow speed of Helheim Glacier is sensitive to changes in runoff. The response is most significant in the heavily crevassed, fast-moving region near the calving front. The delay in the peak of the cross-correlation function implies a transit time of 12-36 h for surface runoff to reach the bed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The South Shetland Islands are located at the northern tip of the AP which is among the fastest warming regions on Earth. The islands are especially vulnerable to climate change due to their exposure to transient low-pressure systems and their maritime climate. Surface air temperature increases (2.5K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. We have compiled a unique meteorological data set for the King George Island (KGI)/Isla 25 de Mayo, the largest of the South Shetland Islands. It comprises high-temporal resolution and spatially distributed observations of surface air temperature, wind directions and wind velocities, as well as glacier ice temperatures in profile with a fully equipped automatic weather station on the Warszawa Icefield, from November 2010 and ongoing. In combination with two long-term synoptic datasets (40 and 10 years, respectively) and NCEP/NCAR reanalysis data, we have looked at changes in the climatological drivers of the glacial melt processes, and the sensitivity of the inland ice cap with regard to winter melting periods and pressure anomalies. The analysis has revealed, a positive trend of 5K over four decades in minimum surface air temperatures for winter months, clearly exceeding the published annual mean statistics, associated to a decrease in mean monthly winter sea level pressure. This concurs with a positive trend in the Southern Annular Mode (SAM) index, which gives a measure for the strength and extension of the Antarctic vortex. We connect this trend with a higher frequency of low-pressure systems hitting the South Shetland Islands during austral winter, bringing warm and moist air masses from lower latitudes. Due to its exposure to the impact of transient synoptic weather systems, the ice cap of KGI is especially vulnerable to changes during winter glacial mass accumulation period. A revision of seasonal changes in adiabatic air temperature lapse rates and their dependency on exposure and elevation has shown a clear decoupling of atmospheric surface layers between coastal areas and the higher-elevation ice cap, showing the higher sensitivity to free atmospheric flow and synoptic changes. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0K/100 m), and a distinct spatial variability reflecting the impact of synoptic weather patterns. The observed advective conditions bringing warm, moist air with high temperatures and rain, lead to melt conditions on the ice cap, fixating surface air temperatures to the melting point. This paper assesses the impact of large-scale atmospheric circulation variability and climatic changes on the atmospheric surface layer and glacier mass accumulation of the upper ice cap during winter season for the Warszawa Icefield on KGI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The east coast of the AP is highly influenced by cold and dry air masses stemming from the adjacent Weddell Sea. By the contrary, the west coast jointly with the South Shetland Islands are directly exposed to the humid and relatively warm air masses from the South Pacific Ocean carried by the strong and persistent westerly winds. Systematic glaciological field studies are very scarce on both sides of the AP, among them can be mentioned a mass-balance program performed continuously since summer 1998/99 by the Instituto Antártico Argentino (IAA) on Vega Island, James Ross Archipelago, on the northeastern flank of the AP. Another continuous plurianual glaciological research has been initiated in 2010 jointly by the University of Bonn and the IAA at the Fourcade Glacier on King George Island (KGI) within the framework of the ESF project IMCOAST (FK 03F0617B). Two transects of mass balance stakes were installed from the top of the Warszawa Ice Dome down to the border of the glaciers Fourcade and Polar Club, to serve for calibration and validation of modeling efforts. The stakes were measured at the beginning and end of each summer field campaign in November 2010, February - March 2011, January - March 2012, and especially during the austral winter 2012 up to March 2013 every 10 to 14 days depending on weather conditions. During the austral winter 2013 and until June 2014 the measurements were conducted every 20 to 30 days, weather permitting. Snow density was measured as well in every field trip from June 2012 until June 2104, establishing a rather homogeneous value along the different parts of the glacier. Snow density in late summer, rho_s is usually higher than the one in late winter, rho_w. Seasonal average values were calculated for the area covered by the mass balance stakes, being rho_s= 471 Kg/m**3 and rho_w = 363 Kg/m**3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of winter balance (bw) and summer balance (bs) have been carried out at Storbreen since 1949. Here we apply a simple mass balance model to study the climate sensitivity and to reconstruct the mass balance series prior to 1949. The model is calibrated and validated with data from an automatic weather station (AWS) operating in the ablation zone of Storbreen since 2001. Regression analysis revealed that bw was best modelled using precipitation data southwest of the glacier. Results from the model compared well with reported mass balance values for the period 1949-2006, obtained correlations (r) for bw and bs varied between 0.83 and 0.87 depending on model set up. Reconstruction of the mass balance series for the period 1924/1925-1948/1949 suggested a cumulative mass deficit of c. 30 m w.e. mainly due to highly negative summer balances, but also lower bw than the average for 1949-2006. Calculated change in specific mass balance for a ±1°C change in air temperature was ±0.55 m w.e., whereas a ±10 % increase in precipitation represented a change of ± 0.20 m w.e. Model results further indicated that for a 2°C warming, the ablation season will be extended by c. 30 days and that the period of ice melt at the AWS location will increase from c. 40 to c. 80 days.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use an automatic weather station and surface mass balance dataset spanning four melt seasons collected on Hurd Peninsula Glaciers, South Shetland Islands, to investigate the point surface energy balance, to determine the absolute and relative contribution of the various energy fluxes acting on the glacier surface and to estimate the sensitivity of melt to ambient temperature changes. Long-wave incoming radiation is the main energy source for melt, while short-wave radiation is the most important flux controlling the variation of both seasonal and daily mean surface energy balance. Short-wave and long-wave radiation fluxes do, in general, balance each other, resulting in a high correspondence between daily mean net radiation flux and available melt energy flux. We calibrate a distributed melt model driven by air temperature and an expression for the incoming short-wave radiation. The model is calibrated with the data from one of the melt seasons and validated with the data of the three remaining seasons. The model results deviate at most 140 mm w.e. from the corresponding observations using the glaciological method. The model is very sensitive to changes in ambient temperature: a 0.5 ◦ C increase results in 56 % higher melt rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 21-year record is presented of surface mass balance measurements along the K-transect. The series covers the period 1990-2011. Data are available at 8 sites along a transect over an altitude range of 390 - 1850 m at approximately 67° N in West Greenland. The surface mass balance gradient is on average 3.8 x 10**-3 m w.e./m, and the mean equilibrium line altitude is 1553 m a.s.l. Only the lower 3 sites within 10 km of the margin experience a significant increasing trend in the ablation over the entire period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to analyse the effects of leaf removal on Touriga Nacional berry temperature and consequent thermal efficiency for anthocyanins biosynthesis. The field experiment was located at Dão Wine Research Station, Nelas, Portugal in an adult vineyard planted with North-South oriented rows, with the red grape variety Touriga Nacional grafted on 110R rootstock. The vines were trained on a vertical shoot positioning, spur-pruned on a bilateral Royat cordon system and deficit irrigated (50% ETc). The experimental design was a randomized complete block design with four replications of twelve vines per elemental plot, and the following two treatments: basal leaf removal (LR) and a control non-defoliated (ND). Berry temperature (Tb) was measured continuously during the second half (3rd to 19th September) of the 2009 ripening period using two-junction, fine-wires copper-constantan thermocouples manually inserted into the berries and connected to a data logger. A sample of clusters located in different canopy positions (exposed and internal; facing East and West) of 4 vines per treatment were used. To quantify the effect of Tb on anthocyanins biosynthesis, the berry hourly mean temperatures were converted into normal heat hours (NHH) and accumulated per day (NHHd) and per monitoring period (NHHc). For quantification of thermal requirements for anthocyanins synthesis and accumulation, a minimum of 10°C, a maximum of 35°C, and an optimum of 26°C were used. Meteorological variables were measured at an automatic weather station installed within the experimental plot. For all days of the monitoring period, daily average berry temperature (dTb) of all monitored berries was lower in ND treatment than in LR, being the maximum differences between treatments registered on 11th September. The highest dTb differences between treatments were registered on the clusters located at the west side of the canopy on 7th September while dTb of the clusters located in the centre of the canopy was less affected by leaf removal. The control non-defoliated treatment (ND) presented a significantly higher NHHc than that of LR being the higher differences presented by the clusters located in the west side. The lowest differences in NHHc were obtained in the clusters located in the centre of the canopy. Our results show that the thermal efficiency for berry anthocyanins accumulation was significantly affected by leaf removal and that this effect was dependent of the meteorological conditions, time of the day and berry/cluster location into the vine canopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In November 2001, two separate Campbell loggers ("Meteologger" and "Hydrologger", both type CR23X) were installed at the Vernagtbach site in the Oetztal Alps, Austria (Latitude: 46.85; Longitude: 10.82; Elevation: 2640 m). On these loggers, 10-minutes centred averages for the meteorological data and 5-minutes centred averages for the hydrological data are recorded. The meteorological parameters comprise air temperature, humidity of the air, air pressure, four radiation components, wind direction and speed, precipitation and snow height. For air temperature, two records are published, recorded with a ventilated and an unventilated Pt-100 in a Stevenson screen; for precipitation, three time series are available: (I) the cumulative record of a weighing gauge for the whole year, (II) single events derived from (I), and (III) single events from a tipping bucket; (II) and (III) are only provided for the period 1, May to 31, October of each year. Wind records are also given with a time step of one hour, as only these records include several statistics of speed and direction. Hydrological parameters are recorded on the "Hydrologger", they comprise water stage, discharge, water temperature and electrolytic conductivity of the water. An identifying number gives the kind of instrument used in the water stage time series. Daily photographs of the glacier are provided and analysed with respect to precipitation type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sheer volume of citizen weather data collected and uploaded to online data hubs is immense. However as with any citizen data it is difficult to assess the accuracy of the measurements. Within this project we quantify just how much data is available, where it comes from, the frequency at which it is collected, and the types of automatic weather stations being used. We also list the numerous possible sources of error and uncertainty within citizen weather observations before showing evidence of such effects in real data. A thorough intercomparison field study was conducted, testing popular models of citizen weather stations. From this study we were able to parameterise key sources of bias. Most significantly the project develops a complete quality control system through which citizen air temperature observations can be passed. The structure of this system was heavily informed by the results of the field study. Using a Bayesian framework the system learns and updates its estimates of the calibration and radiation-induced biases inherent to each station. We then show the benefit of correcting for these learnt biases over using the original uncorrected data. The system also attaches an uncertainty estimate to each observation, which would provide real world applications that choose to incorporate such observations with a measure on which they may base their confidence in the data. The system relies on interpolated temperature and radiation observations from neighbouring professional weather stations for which a Bayesian regression model is used. We recognise some of the assumptions and flaws of the developed system and suggest further work that needs to be done to bring it to an operational setting. Such a system will hopefully allow applications to leverage the additional value citizen weather data brings to longstanding professional observing networks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: There is a recognised relationship between dry weather conditions and increased risk of anterior cruciate ligament (ACL) injury. Previous studies have identified 28 day evaporation as an important weather-based predictor of non-contact ACL injuries in professional Australian Football League matches. The mechanism of non-contact injury to the ACL is believed to increased traction and impact forces between footwear and playing surface. Ground hardness and the amount and quality of grass are factors that would most likely influence this and are inturn, related to the soil moisture content and prevailing weather conditions. This paper explores the relationship between soil moisture content, preceding weather conditions and the Clegg Soil Impact Test (CSIT) which is an internationally recognised standard measure of ground hardness for sports fields. Methodology: The 2.25 kg Clegg Soil Impact Test and a pair of 12 cm soil moisture probes were used to measure ground hardness and percentage moisture content. Five football fields were surveyed at 13 prescribed sites just before seven football matches from October 2008 to January 2009 (an FC Women’s WLeague team). Weather conditions recorded at the nearest weather station were obtained from the Bureau of Meteorology website and total rainfall less evaporation was calculated for 7 and 28 days prior to each match. All non-contact injuries occurring during match play and their location on the field were recorded. Results/conclusions: Ground hardness varied between CSIT 5 and 17 (x10G) (8 is considered a good value for sports fields). Variations within fields were typically greatest in the centre and goal areas. Soil moisture ranged from 3 to 40% with some fields requiring twice the moisture content of others to maintain similar CSIT values. There was a non-linear, negative relationship for ground hardness versus moisture content and a linear relationship with weather (R2, of 0.30 and 0.34, respectively). Three non-contact ACL injuries occurred during the season. Two of these were associated with hard and variable ground conditions.