953 resultados para Automatic model transformation systems
Resumo:
This paper describes the design, implementation and testing of an intelligent knowledge-based supervisory control (IKBSC) system for a hot rolling mill process. A novel architecture is used to integrate an expert system with an existing supervisory control system and a new optimization methodology for scheduling the soaking pits in which the material is heated prior to rolling. The resulting IKBSC system was applied to an aluminium hot rolling mill process to improve the shape quality of low-gauge plate and to optimise the use of the soaking pits to reduce energy consumption. The results from the trials demonstrate the advantages to be gained from the IKBSC system that integrates knowledge contained within data, plant and human resources with existing model-based systems. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
One of the important goals of the intelligent buildings especially in commercial applications is not only to minimize the energy consumption but also to enhance the occupant’s comfort. However, most of current development in the intelligent buildings focuses on an implementation of the automatic building control systems that can support energy efficiency approach. The consideration of occupants’ preferences is not adequate. To improve occupant’s wellbeing and energy efficiency in intelligent environments, we develop four types of agent combined together to form a multi-agent system to control the intelligent buildings. Users’ preferential conflicts are discussed. Furthermore, a negotiation mechanism for conflict resolution, has been proposed in order to reach an agreement, and has been represented in syntax directed translation schemes for future implementation and testing. Keywords: conflict resolution, intelligent buildings, multi-agent systems (MAS), negotiation strategy, syntax directed translation schemes (SDTS).
Resumo:
This study evaluated the effects of fat and sugar levels on the surface properties of Lactobacillus rhamnosus GG during storage in food model systems, simulating yogurt and ice cream, and related them with the ability of the bacterial cells to adhere to Caco-2 cells. Freeze-dried L. rhamnosus GG cells were added to the model food systems and stored for 7 days. The bacterial cells were analyzed for cell viability, hydrophobicity, ζ potential, and their ability to adhere to Caco-2 cells. The results indicated that the food type and its composition affected the surface and adhesion properties of the bacterial cells during storage, with yogurt being a better delivery vehicle than ice cream in terms of bacterial adhesion to Caco-2 cells. The most important factor influencing bacterial adhesion was the storage time rather than the levels of fats and sugars, indicating that conformational changes were taking place on the surface of the bacterial cells during storage.
Resumo:
Logistic models are studied as a tool to convert dynamical forecast information (deterministic and ensemble) into probability forecasts. A logistic model is obtained by setting the logarithmic odds ratio equal to a linear combination of the inputs. As with any statistical model, logistic models will suffer from overfitting if the number of inputs is comparable to the number of forecast instances. Computational approaches to avoid overfitting by regularization are discussed, and efficient techniques for model assessment and selection are presented. A logit version of the lasso (originally a linear regression technique), is discussed. In lasso models, less important inputs are identified and the corresponding coefficient is set to zero, providing an efficient and automatic model reduction procedure. For the same reason, lasso models are particularly appealing for diagnostic purposes.
Resumo:
Oral nutritional supplement drinks (ONS) are beverages high in dairy proteins that are prescribed to individuals at risk of malnutrition. Consumption of ONS is poor in elderly care facilities, with patients commenting that the sensory attributes of these drinks reduce their enjoyment and willingness to consume. Mouth drying is an attribute of ONS found to build with repeated consumption, which may further limit liking of these products. This study investigated the sources of drying sensations by sequential profiling, with a trained sensory panel rating a range of model milk systems and ONS over repeated sips and during after-effects. Sequential profiling found that fortification of milk with both caseinate and whey protein concentrate significantly increased the perception of mouth drying over repeated consumption, increasing by between 35 and 85% over consumption of 40mL. Enrichment of ONS with either whey protein concentrate or milk protein concentrate to a total protein content of 8.7% (wt/wt) resulted in whey and casein levels of 4.3:4.4% and 1.7:7.0% respectively. The product higher in whey protein was substantially more mouth drying, implying that whey proteins may be the most important contributor to mouth drying in ONS. However, efforts to mask mouth drying of protein-fortified milk by increasing sweetness or fat level were unsuccessful at the levels tested. Increasing the viscosity of protein-fortified milk led to a small but significant reduction in mouth drying. However, this approach was not successful when tested within complete ONS. Further analysis is required into the mechanism of protein-derived mouth drying to mask negative sensations and improve the enjoyment and consumption of protein-rich ONS.
Resumo:
An efficient two-level model identification method aiming at maximising a model׳s generalisation capability is proposed for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularisation parameters in the elastic net are optimised using a particle swarm optimisation (PSO) algorithm at the upper level by minimising the leave one out (LOO) mean square error (LOOMSE). There are two elements of original contributions. Firstly an elastic net cost function is defined and applied based on orthogonal decomposition, which facilitates the automatic model structure selection process with no need of using a predetermined error tolerance to terminate the forward selection process. Secondly it is shown that the LOOMSE based on the resultant ENOFR models can be analytically computed without actually splitting the data set, and the associate computation cost is small due to the ENOFR procedure. Consequently a fully automated procedure is achieved without resort to any other validation data set for iterative model evaluation. Illustrative examples are included to demonstrate the effectiveness of the new approaches.
Resumo:
Vehicle activated signs (VAS) display a warning message when drivers exceed a particular threshold. VAS are often installed on local roads to display a warning message depending on the speed of the approaching vehicles. VAS are usually powered by electricity; however, battery and solar powered VAS are also commonplace. This thesis investigated devel-opment of an automatic trigger speed of vehicle activated signs in order to influence driver behaviour, the effect of which has been measured in terms of reduced mean speed and low standard deviation. A comprehen-sive understanding of the effectiveness of the trigger speed of the VAS on driver behaviour was established by systematically collecting data. Specif-ically, data on time of day, speed, length and direction of the vehicle have been collected for the purpose, using Doppler radar installed at the road. A data driven calibration method for the radar used in the experiment has also been developed and evaluated. Results indicate that trigger speed of the VAS had variable effect on driv-ers’ speed at different sites and at different times of the day. It is evident that the optimal trigger speed should be set near the 85th percentile speed, to be able to lower the standard deviation. In the case of battery and solar powered VAS, trigger speeds between the 50th and 85th per-centile offered the best compromise between safety and power consump-tion. Results also indicate that different classes of vehicles report differ-ences in mean speed and standard deviation; on a highway, the mean speed of cars differs slightly from the mean speed of trucks, whereas a significant difference was observed between the classes of vehicles on lo-cal roads. A differential trigger speed was therefore investigated for the sake of completion. A data driven approach using Random forest was found to be appropriate in predicting trigger speeds respective to types of vehicles and traffic conditions. The fact that the predicted trigger speed was found to be consistently around the 85th percentile speed justifies the choice of the automatic model.
Resumo:
Nas últimas décadas, a produção de suínos, pressionada por uma crescente demanda por alimentos, tem-se caracterizado pela maior concentração de animais em grandes unidades de produção, dificultando o registro dos dados individuais. Os sistemas automáticos de identificação eletrônica podem auxiliar a detecção de doenças, a avaliação de respostas fisiológicas, o controle de ingestão de alimentos, a atividade física e ainda o impacto ambiental causado pelo sistema de produção, promovendo melhor controle da propriedade. Transponders injetáveis, brincos eletrônicos e o monitoramento por meio da análise de imagem estão sendo utilizados no processo de identificação. O objetivo desta pesquisa foi avaliar os diferentes locais de implante subcutâneo de microchips em leitões, verificando-se possíveis infecções e/ou rejeições, migrações dos microchips em relação ao local de implante e sua validação em relação à análise de imagem.
Resumo:
In some practical problems, for instance, in the suppression of vibration in mechanical systems, the state-derivative signals are easier to obtain than the state signals. Thus, a method for state-derivative feedback design applied to uncertain nonlinear systems is proposed in this work. The nonlinear systems are represented by Takagi-Sugeno fuzzy models during the modeling of the problem, allowing to use Linear Matrix Inequalities (LMIs) in the controller design. This type of modeling ease the control design, because, LMIs are easily solved using convex programming technicals. The control design aimed at system stabilisation, with or without bounds on decay rate. The efficiency of design procedure is illustrated through a numerical example.
Resumo:
Deterministic Optimal Reactive Power Dispatch problem has been extensively studied, such that the demand power and the availability of shunt reactive power compensators are known and fixed. Give this background, a two-stage stochastic optimization model is first formulated under the presumption that the load demand can be modeled as specified random parameters. A second stochastic chance-constrained model is presented considering uncertainty on the demand and the equivalent availability of shunt reactive power compensators. Simulations on six-bus and 30-bus test systems are used to illustrate the validity and essential features of the proposed models. This simulations shows that the proposed models can prevent to the power system operator about of the deficit of reactive power in the power system and suggest that shunt reactive sourses must be dispatched against the unavailability of any reactive source. © 2012 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Synchronization in nonlinear dynamical systems, especially in chaotic systems, is field of research in several areas of knowledge, such as Mechanical Engineering and Electrical Engineering, Biology, Physics, among others. In simple terms, two systems are synchronized if after a certain time, they have similar behavior or occurring at the same time. The sound and image in a film is an example of this phenomenon in our daily lives. The studies of synchronization include studies of continuous dynamic systems, governed by differential equations or studies of discrete time dynamical systems, also called maps. Maps correspond, in general, discretizations of differential equations and are widely used to model physical systems, mainly due to its ease of computational. It is enough to make iterations from given initial conditions for knowing the trajectories of system. This completion of course work based on the study of the map called ”Zaslavksy Web Map”. The Zaslavksy Web Map is a result of the combination of the movements of a particle in a constant magnetic field and a wave electrostatic propagating perpendicular to the magnetic field. Apart from interest in the particularities of this map, there was objective the deepening of concepts of nonlinear dynamics, as equilibrium points, linear stability, stability non-linear, bifurcation and chaos
Resumo:
In many movies of scientific fiction, machines were capable of speaking with humans. However mankind is still far away of getting those types of machines, like the famous character C3PO of Star Wars. During the last six decades the automatic speech recognition systems have been the target of many studies. Throughout these years many technics were developed to be used in applications of both software and hardware. There are many types of automatic speech recognition system, among which the one used in this work were the isolated word and independent of the speaker system, using Hidden Markov Models as the recognition system. The goals of this work is to project and synthesize the first two steps of the speech recognition system, the steps are: the speech signal acquisition and the pre-processing of the signal. Both steps were developed in a reprogrammable component named FPGA, using the VHDL hardware description language, owing to the high performance of this component and the flexibility of the language. In this work it is presented all the theory of digital signal processing, as Fast Fourier Transforms and digital filters and also all the theory of speech recognition using Hidden Markov Models and LPC processor. It is also presented all the results obtained for each one of the blocks synthesized e verified in hardware