943 resultados para Aqueous two-phase polymer systems
Resumo:
We study numerically the temperature dependencies of specific heat, susceptibility, penetration depth, and thermal conductivity of a coupled (d(x2-y2) + is)-wave Bardeen-Cooper-Schrieffer (BCS) superconductor in the presence of a weak s-wave component (1) on square lattice and (2) on a lattice with orthorhombic distortion. As the temperature is lowered past the critical temperature T-c, a less ordered superconducting phase is created in d(x2-y2) wave, which changes to a more ordered phase in (d(x2-y2) + is) wave at T-c1. This manifests in two second-order phase transitions. The two phase transitions are identified by two jumps in specific heat at T-c and T-c1. The temperature dependencies of the superconducting observables exhibit a change from power-law to exponential behavior as temperature is lowered below T-c1 and confirm the new phase transition. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Um biodigestor anaeróbio de duas fases foi utilizado para se analisar a produção de metano com diferentes cargas de entrada de manipueira. A fase acidogênica foi realizada em processo de batelada e a metanogênica em biodigestor anaeróbio de fluxo ascendente e leito fixo com alimentação contínua. As cargas orgânicas de entrada variaram de 0,33 a 8,48 gDQO (Demanda Química de Oxigênio)/L.dia. A maior porcentagem de metano encontrada foi de 80,9%, com carga orgânica de 0,33g e a menor, 56,8%, obtida com 8,49gDQO/L.d. A maior taxa de redução de DQO foi de 88,89%, obtida com carga orgânica de 2,25g e a menor, 54,95%, com 8,48gDQO/L.d. Analisando-se os dados apresentados verificou-se que a biodigestão anaeróbia pode ser conduzida, pelo menos, de duas maneiras, ou seja, para produção de energia (metano) ou para redução de carga orgânica. A carga orgânica de entrada deve ser calculada em função do objetivo a ser alcançado com a biodigestão anaeróbia.
Resumo:
A pressed pellet of CIO (-)(4) poly (3-methylthiophene) (P3MT) was heated for two hours at 85 degrees C and suddenly dropped in liquid nitrogen. A change was observed around 220 K in the Electron Spin Resonance (ESR) spectra when the sample was slowly cooled from room temperature. ESR line asymmetry parameter (A/B) showed two spatially separated phases. One was identified as a small metallic-like phase. The other phase, the larger one, makes a transition to a semiconducting Charge-Density Wave (CDW) state.
Resumo:
This study describes a technical analysis of a four-phase line as a transmission system alternative. An analysis in the frequency and the time domains is performed to evaluate the electrical characteristics and the transient response of a generic four-phase system compared with those of a conventional three-phase transmission system. The technical features of this non-conventional system are discussed and reviewed based on the current literature. Thus, a new analysis of the four-phase system is presented that emphasises several technical characteristics that have not been discussed in previous studies.
Resumo:
An alternative method is presented in this paper to identify the harmonic components of non-linear loads in single phase power systems based on artificial neural networks. The components are identified by analyzing the single phase current waveform in time domain in half-cycle of the ac voltage source. The proposed method is compared to the fast Fourier transform. Simulation and experimental results are presented to validate the proposed approach.
Resumo:
OBJECTIVE: The purpose of this study was to assess by means of scanning electron microscopy (SEM) the remaining adhesive interface after debonding orthodontic attachments bonded to bovine teeth with the use of hydrophilic and hydrophobic primers under different dental substrate moisture conditions. MATERIAL AND METHODS: Twenty mandibular incisors were divided into four groups (n=5). In Group I, bracket bonding was performed with Transbond MIP hydrophilic primer and Transbond XT adhesive paste applied to moist substrate, and in Group II a bonding system comprising Transbond XT hydrophobic primer and adhesive paste was applied to moist substrate. Brackets were bonded to the specimens in Groups III and IV using the same adhesive systems, but on dry dental enamel. The images were qualitatively assessed by SEM. RESULTS: The absence of moisture in etched enamel enabled better interaction between bonding materials and the adamantine structure. The hydrophobic primer achieved the worst micromechanical interlocking results when applied to a moist dental structure, whereas the hydrophilic system proved versatile, yielding acceptable results in moist conditions and excellent interaction in the absence of contamination. CONCLUSION: The authors assert that the best condition for the application of primers to dental enamel occurs in the absence of moisture.
Resumo:
Lightpath scheduling is an important capability in next-generation wavelength-division multiplexing (WDM) optical networks to reserve resources in advance for a specified time period while provisioning end-to-end lightpaths. In a dynamic environment, the end user requests for dynamic scheduled lightpath demands (D-SLDs) need to be serviced without the knowledge of future requests. Even though the starting time of the request may be hours or days from the current time, the end-user however expects a quick response as to whether the request could be satisfied. We propose a two-phase approach to dynamically schedule and provision D-SLDs. In the first phase, termed the deterministic lightpath scheduling phase, upon arrival of a lightpath request, the network control plane schedules a path with guaranteed resources so that the user can get a quick response with a deterministic lightpath schedule. In the second phase, termed the lightpath re-optimization phase, we re-provision some already scheduled lightpaths to re-optimize for improving network performance. We study two reoptimization scenarios to reallocate network resources while maintaining the existing lightpath schedules. Experimental results show that our proposed two-phase dynamic lightpath scheduling approach can greatly reduce network blocking.
Resumo:
Objectives: The aim of this study was to investigate the internal fit (IF) of glass-infiltrated alumina (ICA - In-Ceram Alumina), yttria-stabilized tetragonal zirconia polycrystals (Y-TZP - IPS e.max ZirCAD), and metal-ceramic (MC - Ni-Cr alloy) crowns. Material and Methods: Sixty standardized resin-tooth replicas of a maxillary first molar were produced for crown placement and divided into 3 groups (n=20 each) according to the core material used (metal, ICA or Y-TZP). The IF of the crowns was measured using the replica technique, which employs a light body polyvinyl siloxane impression material to simulate the cement layer thickness. The data were analyzed according to the surfaces obtained for the occlusal space (OS), axial space (AS) and total mean (TM) using two-way ANOVA with Tukey's multiple comparison test (p<0.05). Results: No differences among the different areas were detected in the MC group. For the Y-TZP and ICA groups, AS was statistically lower than both OS and TM. No differences in AS were observed among the groups. However, OS and TM showed significantly higher values for ICA and Y-TZP groups than MC group. Comparisons of ICA and Y-TZP revealed that OS was significantly lower for Y-TZP group, whereas no differences were observed for TM. Conclusions: The total mean achieved by all groups was within the range of clinical acceptability. However, the metal-ceramic group demonstrated significantly lower values than the all-ceramic groups, especially in OS.
Resumo:
This paper presents an experimental study on two-phase flow patterns and pressure drop of R134a inside a 15.9 mm ID tube containing twisted-tape inserts. Experimental results were obtained in a horizontal test section for twisted-tape ratios of 3, 4, 9 and 14, mass velocities ranging from 75 to 250 kg/m(2) s and saturation temperatures of 5 and 15 degrees C. An unprecedented discussion on two-phase flow patterns inside tubes containing twisted-tape inserts is presented and the flow pattern effects on the frictional pressure drop are carefully discussed. Additionally, a new method to predict the frictional pressure drop during two-phase flow inside tubes containing twisted-tape inserts is proposed. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVES: The aim of this study was to investigate the internal fit (IF) of glass-infiltrated alumina (ICA - In-Ceram Alumina), yttria-stabilized tetragonal zirconia polycrystals (Y-TZP - IPS e.max ZirCAD), and metal-ceramic (MC - Ni-Cr alloy) crowns. MATERIAL AND METHODS: Sixty standardized resin-tooth replicas of a maxillary first molar were produced for crown placement and divided into 3 groups (n=20 each) according to the core material used (metal, ICA or Y-TZP). The IF of the crowns was measured using the replica technique, which employs a light body polyvinyl siloxane impression material to simulate the cement layer thickness. The data were analyzed according to the surfaces obtained for the occlusal space (OS), axial space (AS) and total mean (TM) using two-way ANOVA with Tukey s multiple comparison test (p<0.05). RESULTS: No differences among the different areas were detected in the MC group. For the Y-TZP and ICA groups, AS was statistically lower than both OS and TM. No differences in AS were observed among the groups. However, OS and TM showed significantly higher values for ICA and Y-TZP groups than MC group. Comparisons of ICA and Y-TZP revealed that OS was significantly lower for Y-TZP group, whereas no differences were observed for TM. CONCLUSIONS: The total mean achieved by all groups was within the range of clinical acceptability. However, the metal-ceramic group demonstrated significantly lower values than the all-ceramic groups, especially in OS.
Resumo:
Experimental two-phase frictional pressure drop and flow boiling heat transfer results are presented for a horizontal 2.32-mm ID stainless-steel tube using R245fa as working fluid. The frictional pressure drop data was obtained under adiabatic and diabatic conditions. Experiments were performed for mass velocities ranging from 100 to 700 kg m−2 s−1 , heat flux from 0 to 55 kW m−2 , exit saturation temperatures of 31 and 41◦C, and vapor qualities from 0.10 to 0.99. Pressures drop gradients and heat transfer coefficients ranging from 1 to 70 kPa m−1 and from 1 to 7 kW m−2 K−1 were measured. It was found that the heat transfer coefficient is a strong function of the heat flux, mass velocity, and vapor quality. Five frictional pressure drop predictive methods were compared against the experimental database. The Cioncolini et al. (2009) method was found to work the best. Six flow boiling heat transfer predictive methods were also compared against the present database. Liu and Winterton (1991), Zhang et al. (2004), and Saitoh et al. (2007) were ranked as the best methods. They predicted the experimental flow boiling heat transfer data with an average error around 19%.
Resumo:
Die vorliegende Arbeit beschäftigt sich mit dem Einfluß von Kettenverzweigungen unterschiedlicher Topologien auf die statischen Eigenschaften von Polymeren. Diese Untersuchungen werden mit Hilfe von Monte-Carlo- und Molekular-Dynamik-Simulationen durchgeführt.Zunächst werden einige theoretische Konzepte und Modelle eingeführt, welche die Beschreibung von Polymerketten auf mesoskopischen Längenskalen gestatten. Es werden wichtige Bestimmungsgrößen eingeführt und erläutert, welche zur quantitativen Charakterisierung von Verzweigungsstrukturen bei Polymeren geeignet sind. Es wird ebenso auf die verwendeten Optimierungstechniken eingegangen, die bei der Implementierung des Computerprogrammes Verwendung fanden. Untersucht werden neben linearen Polymerketten unterschiedliche Topolgien -Sternpolymere mit variabler Armzahl, Übergang von Sternpolymeren zu linearen Polymeren, Ketten mit variabler Zahl von Seitenketten, reguläre Dendrimere und hyperverzweigte Strukturen - in Abhängigkeit von der Lösungsmittelqualität. Es wird zunächst eine gründliche Analyse des verwendeten Simulationsmodells an sehr langen linearen Einzelketten vorgenommen. Die Skalierungseigenschaften der linearen Ketten werden untersucht in dem gesamten Lösungsmittelbereich vom guten Lösungsmittel bis hin zu weitgehend kollabierten Ketten im schlechten Lösungsmittel. Ein wichtiges Ergebnis dieser Arbeit ist die Bestätigung der Korrekturen zum Skalenverhalten des hydrodynamischen Radius Rh. Dieses Ergebnis war möglich aufgrund der großen gewählten Kettenlängen und der hohen Qualität der erhaltenen Daten in dieser Arbeit, insbesondere bei den linearen ketten, und es steht im Widerspruch zu vielen bisherigen Simulations-Studien und experimentellen Arbeiten. Diese Korrekturen zum Skalenverhalten wurden nicht nur für die linearen Ketten, sondern auch für Sternpolymere mit unterchiedlicher Armzahl gezeigt. Für lineare Ketten wird der Einfluß von Polydispersität untersucht.Es wird gezeigt, daß eine eindeutige Abbildung von Längenskalen zwischen Simulationsmodell und Experiment nicht möglich ist, da die zu diesem Zweck verwendete dimensionslose Größe eine zu schwache Abhängigkeit von der Polymerisation der Ketten besitzt. Ein Vergleich von Simulationsdaten mit industriellem Low-Density-Polyäthylen(LDPE) zeigt, daß LDPE in Form von stark verzweigten Ketten vorliegt.Für reguläre Dendrimere konnte ein hochgradiges Zurückfalten der Arme in die innere Kernregion nachgewiesen werden.