984 resultados para Aquaculture industry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A brief description is given of the milkfish (Chanos chanos) farming industry in the Philippines. Over the past 20 years, the relative importance of milkfish has declined with the expansion of tilapia, tiger shrimp and seaweed farming. In 1975, some 141,461 mt of milkfish made up 10% of the total fish production, whereas in 1995, the total milkfish harvest of 150,858 mt made up only 5.5% of the total fish production. Milkfish are harvested and marketed mostly fresh or chilled, whole or deboned, but some are canned or smoked. The domestic markets, mainly in Metro Manila, absorb most of the production. Milkfish is also absorbed in different product forms: dried, canned, smoked, or marinated. An export market for quick-frozen deboned milkfish fillets has begun to develop and fish processing companies are responding fast. The milkfish farming industry has important linkages with the various sectors that supply the inputs, and those that transport, store, market or process the harvest. For intensive milkfish farming to be both profitable and sustainable, more value-added products must be developed and marketed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crocodiles have a long breeding life, which ranges from 25-30 years. There are 27 species and subspecies of crocodiles throughout the world, 18 of which are in danger of extinction, the rest being threatened with declining population due to overhunting and habitat destruction. Two known crocodile species exist in the Philippines: Crocodylus mindorensis (freshwater crocodile) and C. porosus (saltwater crocodile). Killing adult crocodiles, as is being done now, drastically reduces the potential population. Moreover, toxic wastes from mines, destruction of marshes and riverine habitats, and the conversion of their natural habitats for fishponds additionally threaten their populations. Estimates indicate that there are only about 100 Philippine crocodiles in the wild now. The Crocodile Farming Institute (CFI) was established in Palawan, in 1987, in order to save the crocodiles from extinction in the Philippines. It is now one of the components of the Palawan Wildlife and Conservation Center, and aims to conserve the 2 endangered species in the Philippines and also to develop and introduce a suitable crocodile farming technology that will help uplift the socio-economic well-being of the Filipino people. CFI believes in the potential of commercial utilization of crocodiles as a dollar-generating industry for the Philippines. It is a very profitable business and could be a multi-million dollar industry. A brief outline is given of the economic and marketing potentials of farming crocodiles in the Philippines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The foregoing account gives a picture of the exploitation and control of the wild population of Crocodilus niloticus in Uganda from 1920 to the present day. The economic value of the crocodile is shown, and some idea is given of the possibility of maintaining this economic return to Uganda by farming crocodiles in captivity. The Uganda Fisheries Department is actively pursuing the issues which arise from the present status of the wild population, and the need for artificial rearing of crocodiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nutrient-rich effluents caused rising concern due to eutrophication of aquatic environment by utilization of a large amount of formula feed. Nutrient removal and water quality were investigated by planting aquatic vegetable on artificial beds in 36-m(2) concrete fishponds. After treatment of 120 days, 30.6% of total nitrogen (TN) and 18.2% of total phosphorus (TP) were removed from the total input nutrients by 6-m(2) aquatic vegetable Ipomoea aquatica. The concentrations of TN, TP, chemical oxygen demand (COD) and chlorophyll a in planted ponds were significantly lower than those in non-planted ponds (P<0.05). Transparency of water in planted ponds was much higher than that of control ponds. No significant differences in the concentration of total ammonia nitrogen (TAN), nitrate nitrogen (NO3-N) and nitrite nitrogen (NO2--N) were found between planted and non-planted ponds. These results suggested that planting aquatic vegetable with one-sixth covered area of the fishponds could efficiently remove nutrient and improve water quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors reviewed the aquacultural history of Acipenseriformes in China, related the legal status and examined the current status of the cultured species or hybrids, origins of seedlings, quantities of production, geographic distribution in farming, and the sustainability for both restocking programmes and human consumption. The census shows that since 2000, the production of cultured sturgeons in China appears to have become the largest in the world. As of 2000, the rapid growth of sturgeon farming in China mainly for commercial purposes has shifted harvests in the Amur River from caviar production to the artificial culture of sturgeon seedlings. This dramatic development has also caused a series of extant and potential problems, including insufficient market availability and the impact of exotic sturgeons on indigenous sturgeon species. Annual preservation of sufficient higher-age sturgeons should be a national priority in order to establish a sustainable sturgeon-culture industry and to preserve a gene pool of critically endangered sturgeon species to prevent their extinction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The world demand for fish and fishery products is increasing steadily and it is generally accepted that it will not be possible to meet the heavy demand with resources exploited from capture fishery alone. Now aquaculture is well established and fastdeveloping industry in many countries and is a major focus sector for development. During recent decades, aquaculture has gained momentum, throughout the world especially in developing countries. According to Food and Agricultural Oganisation (FAO, 2000), global aquaculture production was 26.38 tones in 1996 have reached 32.9 million tonnes during 1999. Only marine aquaculture sector has contributed 13.1 million tonnes during 1999.India is a major fish producing country. About one half of lndia’s brackish water lands are currently being utilized for farming in order to reduce the gap between supply and demand for fish. Aquaculture has become a major source of livelihood for people and its role in integrated rural development, generation of employment and earning foreign exchange, thereby alleviating poverty is being greatly appreciated around the world.Among the infectious agents, bacteria are becoming the prime causal organisms for diseases in food fishes and other marine animals. Sindermann, (1970) reported that bacterial fish pathogen most commonly found among marine fishes is species of Pseudomonas, Vibrio and Mycobacterium. These can be categorized into primary pathogens; secondary invaders that may cause systemic disease in immunocompromised hosts; and normal marine flora which are not pathogenic but may occur on body surfaces or even within the tissues of the host. I-Iigh density of animals in hatchery tanks and ponds is conducive to the spread of pathogen and the aquatic environment with regular application of protein rich feed, is ideal for culturing bacteria. Bacteria, which are normally present in seawater or on the surface of fish, can invade and cause pathological effects in fishes, which are injured or subjected to other environmental stresses.Mycobacteria except parasites are known as nontuberculosis mycobacteria (NTM), atypical mycobacteria or mycobacteria other than tuberculosis(MO'l'l"). This group of mycobacteria includes opportunistic pathogens and saprophytes. Environmental mycobacteria are ubiquitous in distribution and the sources may include soil, water, warm-blooded as well as cold-blooded animals. Disease caused by environmental mycobacterial strains in susceptible humans (Goslee & Wolinsky, 1976; Grange, 1987), animals and fishes are increasingly attracting attention. Greatest importance of environmental mycobacteria is believed to be their role in immunological priming of humans and animals, thereby modifying their immune responses to subsequent exposure to pathogenic species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibrio are important during hatchery rearing. aquaculture phase and post-harvest quality of shrimps. Vibrio spp are of concern to shrimp farmers and hatchery operators because certain species can cause Vibriosis. Vibrio species are of concern to humans because certain species cause serious diseases.With the progress in aquaculture, intensive systems used for shrimp aquaculture create an artificial environment that increases bacterial growth. To maintain the productivity of such an intensive aquaculture, high inputs of fish protein have to be employed for feeding together with high levels of water exchange and the massive use of antibiotics/ probiotics / chemicals. It seems that the combination of these conditions favours the proliferation of vibrios and enhances their virulence and disease prevalence. The risk of a microbial infection is high, mainly at larval stages. The effect and severity are related to Vibrio species and dose, water, feed, shrimp quality and aquaculture management.Consumption of seafood can occasionally result in food-bome illnesses due to the proliferation of indigenous pathogens like Vibrio.Of the l2 pathogenic Vibrio species, 8 species are known to be directly food associated. Strict quality guidelines have been laid by the importing nations, for the food products that enter their markets. The microbiological quality requirement for export of frozen shrimp products is that V.cholerae, V.parahaemolyticus and V. vulnificus should be absent in 25g of the processed shrimp (Export Inspection Council of India, 1995). The mere presence of these pathogenic Vibrios is sufficient for the rejection of the exported product.The export rejections cause serious economic loss to the shrimp industry and might harm the brand image of the shrimp products from the countiy.There is a need for an independent study on the incidence of different pathogenic vibrios in shrimp aquaculture and investigate their biochemical characteristics to have a better understanding about the growth and survival of these organisms in the shrimp aquaculture niche. PCR based methods (conventional PCR, duplex PCR, multiplex-PCR and Real Time PCR) for the detection of the pathogenic Vibrios is important for rapid post-harvest quality assessment. Studies on the genetic heterogeneity among the specific pathogenic vibrio species isolated from shrimp aquaculture system provide; valuable information on the extent of genetic diversity of the pathogenic vibrios, the shrimp aquaculture system.So the present study was undertaken to study the incidence of pathogenic Vibrio spp. in Penaeus monodon shrimp hatcheries and aquaculture farms, to carry out biochemical investigations of the pathogenic Vibrio spp isolated from P. monodon hatchery and. aquaculture environments, to assess the effect of salt (NaCl) on the growth and enzymatic activities of pathogenic Vibrio spp., to study the effect of preservatives, and chemicals on the growth of pathogenic Vibrio spp. and to employ polymerase chain reaction (PCR) methods for the detection of pathogenic V ibrio spp.Samples of water (n=7) and post-larvae (n=7) were obtained from seven Penaeus monodon hatcheries and samples of water (n=5), sediment (n=5) and shrimp (n=5) were obtained from five P. monodon aquaculture farms located on the East Coast of lndia. The microbiological examination of water, sediment, post-larvae and shrimp samples was carried out employing standard methods and by using standard media.The higher bacterial loads were obtained in pond sediments which can be attributed to the accumulation of organic matter at the pond bottom which stimulated bacterial growth.Shrimp head. (4.78 x 105 +/- 3.0 x 104 cfu/g) had relatively higher bacterial load when compared to shrimp muscle 2.7 x 105 +/- 1.95 x 104 cfu/g). ln shrimp hatchery samples, the post-larvae (2.2 x 106 +/- 1.9 x 106 cfu/g) had higher bacterial load than water (5.6 x 103 +/- 3890 cfu/ml).The mean E.coli counts were higher in aquaculture pond sediment (204+/-13 cfu/g) and pond water (124+/-88 cfu/ml). Relatively lower Escherichia coli counts were obtained from shrimp samples (12+/-11 to 16+/-16.7 cfu/g). The presence of E.coli in aquaculture environment might have been from the source water. E.coli was not detected in hatchery waters and post-larvae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is a study on ‘Legal Control of Fishing Industry in Kerala.Fishery and Fishery-related legislations are sought to be examined in the light of scientific opinion and judicial decisionsThis work is divided into five Part.The thrust of time Study is on the success of legislative measures in attempting to achieve socio-economic justice for the fishermen community.Fishing is more an avocation than an industry. It is basically the avocation of the artisanal or traditional fishermen who depend on it for their livelihood. As an ‘industry’, it is a generator of employment, income and wealth.The modern tendency in national legislations is to integrate legal proivisions relating to EEZ fisheries into the general fisheries legislation.Chartered fishing was introduced by the Central Government during 1977-78 to establish the abundance and distribution of fishery resources in Indian EEZ, for transfer of technology and for related purposes.Going by the provisions of Articles 61 and 62 of the U.N. Convention on the Law of the Sea, 1982, foreign fishing need be permitted in our EEZ area only if there is any surplus left after meeting our national requirements.Conservation of the renewable fishery resources should start with identification of the species, their habitats, feeding and breeding patterns, their classification and characteristics. Fishing patterns and their impact on different species and areas require to be examined and investigated.the Central Government, that the Kerala Marine Fishing Regulation Act, 1980 was passed.our traditional fishermen that our Governments in power in Kerala resorted to the appointment of Commissions after Commissions to enquire into the problems of resource management and conservation of the resources. The implementation of the recommendations of these Commissions is the need of the times.General infrastructure has increased to a certain extent in the fishery villages; but it is more the result of the development efforts of the State rather than due to increase in earnings from fishing. Fisherwomen ar e still unable to enjoy the status and role expected of them in the society and the family.Around 120 million people around the tuorld are economically dependent on fisheries. In developing countries like India, small-scale fishers are also the primary suppliers of fish, particularly for local consumption. A most important role of the fisheries sector is as a source of domestically produced food. Fish, as a food item, is a nutrient and it has great medicinal value.Consumers in our country face a dramatic rise in fish prices as our ‘fishing industry’ is linked with lucrative markets in industrial countries. Autonomy of States should be attempted to be maintained to the extent possible with the help and co-operation of the Centre. Regional co-operation of the coastal states interse and with the Centre should be attempted to be achieved under the leadership of the Centre in matters of regional concern. At time national level, a ifisheries management policy and plan should be framed in conformity with the national economic policies and plans as also keeping pace with the local and regional needs and priorities. Any such policy, plan and legislation should strive to achieve sustainability of the resources as well as support to the subsistence sector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine yeast have been regarded as safe and showing a beneficial impact on biotechnological process. It provides better nutritional and dietary values indicating their potential application as feed supplements in aquaculture. Brown et al. (1996) evaluated all the marine yeasts characterised with high protein content, carbohydrate, good amino acid composition and high levels of saturated fats. However, there is paucity of information on marine yeasts as feed supplements and no feed formulation has been found either in literature or in market supplemented with them. This statement supported by Zhenming et al. (2006) reported still a lack of feed composed of single cell protein (SCP) from marine yeasts with high content of protein and other nutrients. Recent research has shown that marine yeasts also have highly potential uses in food, feed, medical and biofuel industries as well as marine biotechnology (Chi et al., 2009; 2010). Sajeevan et al. (2006; 2009a) and Sarlin and Philip (2011) demonstrates that the marine yeasts Candida sake served as a high quality, inexpensive nutrient source and it had proven immunostimulatory properties for cultured shrimps. This strain has been made part of the culture collection of National Centre for Aquatic Animal Health, Cochin University of Science and Technology as Candida MCCF 101. Over the years marine yeasts have been gaining increased attention in animal feed industry due to their nutritional value and immune boosting property.Therefore, the present study was undertaken, and focused on the nutritional quality, optimization of large scale production and evaluation of its protective effect on Koi carp from Aeromonas infection

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The status of wild capture fisheries has induced many fisheries and conservation scientists to express concerns about the concept of using forage fish after reduction to fishmeal and fish oil, as feed for farmed animals, particularly in aquaculture. However, a very large quantity of forage fish is being also used untransformed (fresh or frozen) globally for other purposes, such as the pet food industry. So far, no attempts have been made to estimate this quantum, and have been omitted in previous fishmeal and fish oil exploitation surveys. On the basis of recently released data on the Australian importation of fresh or frozen fish for the canned cat food industry, here we show that the estimated amount of raw fishery products directly utilized by the cat food industry equates to 2.48 million metric tonnes per year. This estimate, plus the previously reported global fishmeal consumption for the production of dry pet food suggest that 13.5% of the total 39.0 million tonnes of wild caught forage fish is used for purposes other than human food production. This study attempts to bring forth information on the direct use of fresh or frozen forage fish in the pet food sector that appears to have received little attention to this date and that needs to be considered in the global debate on the ethical nature of current practices on the use of forage fish, a limited biological resource.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hunger and malnutrition remain among the most devastating problems facing the world’s poor and needy, and continue to dominate the health and well-being of the world’s poorest nations. Moreover, there are growing doubts as to the long-term sustainability of many existing food production systems, including capture fisheries and aquaculture, to meet the future increasing global demands.Of the different agricultural food production systems, aquaculture (the farming of aquatic animals and plants) is widely viewed as an important weapon in the global fight against malnutrition and poverty, particularly within developing countries where over 93% of global production is currently produced, providing in most instances an affordable and a much needed source of high quality animal protein, lipids, and other essential nutrients. The current article compares for the first time the development and growth of the aquaculture sector and capture fisheries by analyzing production by mean trophic level. Whereas marine capture fisheries have been feeding the world on high trophic level carnivorous fish species since mankind has been fishing the oceans, aquaculture production within developing countries has focused, by and large, on the production of lower trophic level species. However, like capture fisheries, aquaculture focus within economically developed countries has been essentially on the culture of high value-, high trophic level-carnivorous species. The long term sustainability of these production systems is questionable unless the industry can reduce its dependence upon capture fisheries for sourcing raw materials for feed formulation and seed inputs. In line with above, the article calls for the urgent need for all countries to adopt and adhere to the principles and guidelines for responsible aquaculture of the FAO Code of Conduct for Responsible Fisheries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global and Asian aquaculture have witnessed a ten-fold increase in production from 1980 to 2004. However, the relative percent contribution to production of each of the major commodities has remained almost unchanged. For example, the contribution of freshwater finfish has declined from 71 to 66 percent in Asia but has remained unchanged globally over the last 20 to 30 years. This fact has dictated trends in the use of fish as a feed for cultured stocks. The growth in the sector has gone hand in hand with an increasing dependence on fish as feed, either directly or indirectly. In a number of countries in the Asia-Pacific region, the aquaculture sector has surpassed the capture fisheries sector in its respective contributions to the gross domestic product (GDP). Aquaculture’s increased contribution to national GDPs can be taken as a clear indication of the contribution of the sector to food security and poverty alleviation. The use of finfish and other aquatic organisms as a feed source can be through direct utilization of whole or chopped raw fish in wet form, through fishmeal and fish oil in formulated feeds, and/or as live fish, although the latter is uncommon and the overall amounts used are relatively small. In the first two categories, the fish used are often termed “trash fish/low-value fish”. Although attempts have been made to define this term, all definitions have a certain degree of ambiguity and/or subjectivity. In this regional review, the amount of fish used as feed sources based on the above categories was estimated primarily from the production data, supported by assumptions on the inclusion levels of fishmeal in formulated feeds and observed feed conversion efficiencies for both formulated feeds and for stock fed trash fish/low-value fish directly. A scenario for the use of fish as feed was developed by starting from the levels of aquaculture production recorded in 2004 and assuming increases in production volumes of 10, 15 and 20 percent by 2010, respectively, for the three trajectories. In parallel, the pattern of wild fish use as feed was projected to change as fish and shrimp farmers increasingly replace farmmade feeds by incorporating trash fish/low-value fish with manufactured feeds that include fishmeal. Also, the fishmeal inclusion rates in manufactured feeds are falling slowly, and this has been incorporated into the projections. The regional review also deals with the production of fishmeal using trash fish/low-value fish in the Asia-Pacific region. Regional fishmeal production as a whole is relatively low when compared with that of major fishmeal-producing countries such as Chile, Iceland and Norway, amounting to approximately 1 million tonnes per year. However, there is a trend towards increasing the use of fish industry waste, such as from the tuna canning industry in Thailand. The fishmeal produced in the region is priced considerably lower than globally traded fishmeal, but its quality is poorer. Total fishmeal use in Asian aquaculture in 2004 was estimated as 2 388 million tonnes, the highest proportion of this being used for crustacean aquaculture (1 418 million tonnes). Based on growth predictions (to year 2010) in the sector and improvements to feed quality and management, it is expected that the quantity of fishmeal used in Asian aquaculture will be slightly less than at present. An estimated 240 000 tonnes of fish oil is used in Asian aquaculture, principally in shrimp feeds. Based on production estimates of commodities in 2004 that rely on trash fish/low-value fish as the main feed source, this regional review suggests that Asian aquaculture currently uses between 2 465 and 3 882 million tonnes, an amount that is predicted to decrease to between 1.890 and 2 795 million tonnes by 2010. The use of trash fish/low-value fish and fishmeal by the aquaculture sector has been repeatedly adjudicated as a non-sustainable practice, and globally the sector is seeking to reduce its dependence on fish as feed through improved feed management practices and development of better quality feeds and feed formulations using alternative ingredients. Over the next few years, decreases in the use of trash fish/low-value fish are also expected to be achieved through better conversion of raw materials into fishmeal and fish oil during the reduction processes. The “way forward” in addressing the issue of the use of fish as feed in aquaculture in the Asia-Pacific region includes the need for a concerted regional research thrust to reduce the use of fish as feed sources in aquaculture, as has been achieved in the animal husbandry sector. Secondly, there is a need to increase farmer awareness on the use of trash fish as feed. This is achievable, considering the similar progress that has been made by the region’s shrimp farming sector, which almost exclusively involves small-scale practitioners who are often clustered in a given locality. The analysis also suggests that the use of trash fish/low-value fish in aquaculture may be compatible with improving food security and alleviating poverty. In Asia, trash fish/low-value fish is mostly landed in areas where there are other suitable fish commodities for human consumption. To make the trash fish/low-value fish suitable and available for human consumption would involve some degree of value-adding and transportation costs, which are likely to increase the price to beyond the means of the consumer, particularly in remote rural areas. Under such a scenario, the direct or indirect use of this perishable resource as a feed source to produce a consumable commodity appears to make economic sense and appears to be the most logical use for overall human benefit. In this manner, trash fish/low-value fish contributes to food security by increasing income generation opportunities and hence contributes to poverty alleviation. Another factor that needs to be taken into account is the large numbers of artisanal fishers who harvest this raw material. The continued use of trash fish/low-value fish, therefore, allows these fishers to maintain their livelihoods1. Admittedly, this is an area that warrants more detailed investigation, from resource use, livelihoods and economic viewpoints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis was to investigate some important key factors able to promote the prospected growth of the aquaculture sector. The limited availability of fishmeal and fish oil led the attention of the aquafeed industry to reduce the dependency on marine raw materials in favor of vegetable ingredients. In Chapter 2, we reported the effects of fishmeal replacement by a mixture of plant proteins in turbot (Psetta maxima L.) juveniles. At the end of the trial, it was found that over the 15% plant protein inclusion can cause stress and exert negative effects on growth performance and welfare. Climate change aroused the attention of the aquafeed industry toward the production of specific diets capable to counteract high temperatures. In Chapter 3, we investigated the most suitable dietary lipid level for gilthead seabream (Sparus aurata L.) reared at Mediterranean summer temperature. In this trial, it was highlighted that 18% dietary lipid allows a protein sparing effect, thus making the farming of this species economically and environmentally more sustainable. The introduction of new farmed fish species makes necessary the development of new species-specific diets. In Chapter 4, we assessed growth response and feed utilization of common sole (Solea solea L.) juveniles fed graded dietary lipid levels. At the end of the trial, it was found that increasing dietary lipids over 8% led to a substantial decline in growth performance and feed utilization indices. In Chapter 5, we investigated the suitability of mussel meal as alternative ingredient in diets for common sole juveniles. Mussel meal proved to be a very effective alternative ingredient for enhancing growth performance, feed palatability and feed utilization in sole irrespectively to the tested inclusion levels. This thesis highlighted the importance of formulating more specific diets in order to support the aquaculture growth in a sustainable way.