993 resultados para Anthopleura-elegantissima Brandt
Resumo:
Seasonal changes in the abundance, size and occurrence of furciliae of Euphausia krohni (Brandt), Nematoscelis megalops (G. O. Sars) and Thysanoessa gregaria G. O. Sars are described from samples taken at 10 m depth with the Continuous Plankton Recorder (CPR) over a period of 2 yr (January 1966 to December 1967) in the North Atlantic Ocean. E. krohni and T. gregaria were found to breed through most of the year but N. megalops bred only in spring and summer. Annual mean biomass was calculated directly from the data and production was estimated from published P:B ratios. The seasonal occurrences of E. brevis Hansen, E. hemigibba Hansen, E. mutica Hansen, E. tenera Hansen, Stylocheiron longicorne G. O. Sars, S. maximum Hansen, Thysanopoda acutifrons Holt and Tattershall and T. aequalis Hansen in the samples are described.
Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean
Resumo:
The factors regulating phytoplankton community composition play a crucial role in structuring aquatic food webs. However, consensus is still lacking about the mechanisms underlying the observed biogeographical differences in cell size composition of phytoplankton communities. Here we use a trait-based model to disentangle these mechanisms in two contrasting regions of the Atlantic Ocean. In our model, the phytoplankton community can self-assemble based on a trade-off emerging from relationships between cell size and (1) nutrient uptake, (2) zooplankton grazing, and (3) phytoplankton sinking. Grazing 'pushes' the community towards larger cell sizes, whereas nutrient uptake and sinking 'pull' the community towards smaller cell sizes. We find that the stable environmental conditions of the tropics strongly balance these forces leading to persistently small cell sizes and reduced size diversity. In contrast, the seasonality of the temperate region causes the community to regularly reorganize via shifts in species composition and to exhibit, on average, bigger cell sizes and higher size diversity than in the tropics. Our results raise the importance of environmental variability as a key structuring mechanism of plankton communities in the ocean and call for a reassessment of the current understanding of phytoplankton diversity patterns across latitudinal gradients.
Resumo:
Despite increased research over the last decade, diversity patterns in Antarctic deep-sea benthic taxa and their driving forces are only marginally known. Depth-related patterns of diversity and distribution of isopods and bivalves collected in the Atlantic sector of the Southern Ocean are analysed. The data, sampled by epibenthic sledge at 40 deep-sea stations from the upper continental slope to the hadal zone (774 – 6348 m) over a wide area of the Southern Ocean, comprises 619 species of isopods and 81 species of bivalves,. There were more species of isopods than bivalves in all samples, and species per station varied from 2 to 85 for isopods and from 0 to 18 for bivalves. Most species were rare, with 72% of isopod species restricted to one or two stations, and 45% of bivalves. Among less-rare species bivalves tended to have wider distributions than isopods. The species richness of isopods varied with depth, showing a weak unimodal curve with a peak at 2000 – 4000 m, while the richness of bivalves did not. Multivariate analyses indicate that there are two main assemblages in the Southern Ocean, one shallow and one deep. These overlap over a large depth-range (2000 – 4000 m). Comparing analyses based on the Sørensen resemblance measure (presence/absence) and Γ+ (presence/absence incorporating relatedness among species) indicates that rare species tend to have other closely related species within the same depth band. Analysis of relatedness among species indicates that the taxonomic variety of bivalves tends to decline at depth, whereas that of isopods is maintained. This, it is speculated, may indicate that the available energy at depth is insufficient to maintain a range of bivalve life-history strategies
Resumo:
We report results on the performance of a free-electron laser operating at a wavelength of 13.7 nm where unprecedented peak and average powers for a coherent extreme-ultraviolet radiation source have been measured. In the saturation regime, the peak energy approached 170 J for individual pulses, and the average energy per pulse reached 70 J. The pulse duration was in the region of 10 fs, and peak powers of 10 GW were achieved. At a pulse repetition frequency of 700 pulses per second, the average extreme-ultraviolet power reached 20 mW. The output beam also contained a significant contribution from odd harmonics of approximately 0.6% and 0.03% for the 3rd (4.6 nm) and the 5th (2.75 nm) harmonics, respectively. At 2.75 nm the 5th harmonic of the radiation reaches deep into the water window, a wavelength range that is crucially important for the investigation of biological samples.
Resumo:
Los primeros parágrafos de la sección “El derecho privado” (§§ 1-17) de la Doctrina del derecho de Kant incluyen el conjunto de los elementos sistemáticos que conciernen a la justificación de los derechos relativos a la propiedad. El propósito central de este trabajo es analizar la función sistemática del concepto de “posesión común originaria” en la doctrina kantiana de la propiedad, con especial interés en el sentido novedoso que adquiere ese concepto —que pertenecía a la tradición del derecho natural— en su reformulación como un “concepto práctico de la razón, que contiene a priori, el principio según el cual tan solo los hombres pueden hacer uso del lugar sobre la tierra siguiendo leyes jurídicas” (RL, 262).
Resumo:
Complex I (NADH: ubiquinone oxidoreductase) is generally regarded as one of the major sources of mitochondrial reactive oxygen species (ROS). Mitochondrial membranes from the obligate aerobic yeast Yarrowia lipolytica, as well as the purified and reconstituted enzyme, can be used to measure complex I-dependent generation of superoxide (O-2(center dot-)). The use of isolated complex I excludes interference with other respiratory chain complexes and matrix enzymes during superoxide dismutase-sensitive reduction of acetylated cytochrome c. Alternately. hydrogen peroxide formation can be measured by the Amplex Red/horseradish peroxidase assay. Both methods allow the determination of complex I-generated ROS, depending on substrates (NADH, artificial ubiquinones), membrane potential, and active/deactive transition. ROS production by Yorrowia complex I in the
Resumo:
Mitochondrial complex I (NADH: ubiquinone oxidoreductase) undergoes reversible deactivation upon incubation at 30-37 degrees C. The active/deactive transition could play an important role in the regulation of complex I activity. It has been suggested recently that complex I may become modified by S-nitrosation under pathological conditions during hypoxia or when the nitric oxide: oxygen ratio increases. Apparently, a specific cysteine becomes accessible to chemical modification only in the deactive form of the enzyme. By selective fluorescence labeling and proteomic analysis, we have identified this residue as cysteine-39 of the mitochondrially encoded ND3 subunit of bovine heart mitochondria. Cysteine-39 is located in a loop connecting the first and second transmembrane helix of this highly hydrophobic subunit. We propose that this loop connects the ND3 subunit of the membrane arm with the PSST subunit of the peripheral arm of complex I, placing it in a region that is known to be critical for the catalytic mechanism of complex I. In fact, mutations in three positions of the loop were previously reported to cause Leigh syndrome with and without dystonia or progressive mitochondrial disease.
Resumo:
NADH:ubiquinone oxidoreductase (complex I) is the largest and most complicated enzyme of aerobic electron transfer. The mechanism how it uses redox energy to pump protons across the bioenergetic membrane is still not understood. Here we determined the pumping stoichiometry of mitochondrial complex I from the strictly aerobic yeast Yarrowia lipolytica. With intact mitochondria, the measured value of 3.8H(->+)/2e(-) indicated that four protons are pumped per NADH oxidized. For purified complex I reconstituted into proteoliposomes we measured a very similar pumping stoichiometry of 3.6H(->+)/2e(-). This is the first demonstration that the proton pump of complex I stayed fully functional after purification of the enzyme. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Proton pumping respiratory complex I (NADH: ubiquinone oxidoreductase) is a major component of the oxidative phosphorylation system in mitochondria and many bacteria. In mammalian cells it provides 40% of the proton motive force needed to make ATP. Defects in this giant and most complicated membrane-bound enzyme cause numerous human disorders. Yet the mechanism of complex I is still elusive. A group exhibiting redox-linked protonation that is associated with iron-sulfur cluster N2 of complex I has been proposed to act as a central component of the proton pumping machinery. Here we show that a histidine in the 49-kDa subunit that resides near iron-sulfur cluster N2 confers this redox-Bohr effect. Mutating this residue to methionine in complex I from Yarrowia lipolytica resulted in a marked shift of the redox midpoint potential of iron-sulfur cluster N2 to the negative and abolished the redox-Bohr effect. However, the mutation did not significantly affect the catalytic activity of complex I and protons were pumped with an unchanged stoichiometry of 4 H+/2e(-). This finding has significant implications on the discussion about possible proton pumping mechanism for complex I.
Resumo:
The mechanism of energy converting NADH:ubiquinone oxidoreductase (complex 1) is Still unknown. A current controversy centers around the question whether electron transport of complex I is always linked to vectorial proton translocation or whether in some organisms the enzyme pumps sodium ions instead. To develop better experimental tools to elucidate its mechanism, we have reconstituted the affinity purified enzyme into proteoliposomes and monitored the generation of Delta pH and Delta psi. We tested several detergents to solubilize the asolectin used for liposome formation. Tightly coupled proteoliposomes containing highly active complex I were obtained by detergent removal with BioBeads after total solubilization or the phospholipids with n-octyl-beta-D-glucopyranoside. We have used dyes to monitor the formation of the two components of the proton motive force, Delta pH and Delta psi, across the liposomal membrane, and analyzed the effects of inhibitors, uncouplers and ionophores on this process. We show that electron transfer of complex I of the lower eukaryote Y. lipolytica is clearly linked to proton translocation. While this study was not specifically designed to demonstrate possible additional sodium translocating properties of complex 1, we did not find indications for primary or secondary Na+ translocation by Y lipolytica complex I. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Generation of reactive oxygen species (ROS) is increasingly recognized as an important cellular process involved in numerous physiological and pathophysiological processes. Complex I ( NADH: ubiquinone oxidoreductase) is considered as one of the major sources of ROS within mitochondria. Yet, the exact site and mechanism of superoxide production by this large membrane-bound multiprotein complex has remained controversial. Here we show that isolated complex 1 from Yarrowia lipolytica forms superoxide at a rate of 0.15% of the rate measured for catalytic turnover. Superoxide production is not inhibited by ubiquinone analogous inhibitors. Because mutant complex I lacking a detectable iron-sulfur cluster N2 exhibited the same rate of ROS production, this terminal redox center could be excluded as a source of electrons. From the effect of different ubiquinone derivatives and pH on this side reaction of complex I we concluded that oxygen accepts electrons from FMNH2 or FMN semiquinone either directly or via more hydrophilic ubiquinone derivatives.
Resumo:
Alternative NADH dehydrogenases (NADH:ubiquinone oxidoreductases) are single subunit respiratory chain enzymes found in plant and fungal mitochondria and in many bacteria. It is unclear how these peripheral membrane proteins interact with their hydrophobic substrate ubiquinone. Known inhibitors of alternative NADH dehydrogenases bind with rather low affinities. We have identified 1-hydroxy-2-dodecyl-4(1H)quinolone as a high affinity inhibitor of alternative NADH dehydrogenase from Yarrowia lipolytica. Using this compound, we have analyzed the bisubstrate and inhibition kinetics for NADH and decylubiquinone. We found that the kinetics of alternative NADH dehydrogenase follow a ping-pong mechanism. This suggests that NADH and the ubiquinone headgroup interact with the same binding pocket in an alternating fashion.