982 resultados para Alpha-Si3N4
Resumo:
Liver mitochondria isolated from vanadate-administered rats showed increased (20-25%) rates of oxidation of both NAD(+)-linked substrates and succinate. Respiratory control index and ADP/O were unaffected by the treatment. Dormant and uncoupler-stimulated ATPase activity also was not affected by vanadate administration. Membrane-bound, electron-transport-linked dehydrogenase activities (both NAD(+)- and succinate-dependent) increased by 15-20% on vanadate treatment. Mitochondrial alpha-glycerophosphate dehydrogenase activity increased by 50% on vanadate administration. The above effects of vanadate on oxidoreductase activities could be prevented by the prior administration of antagonists to alpha-adrenergic receptors. Substrate-dependent H2O2 generation by mitochondria also showed an increase on vanadate administration.
Resumo:
The modes of binding of alpha- and beta-anomers of D-galactose, D-fucose and D-glucose to L-arabinose-binding protein (ABP) have been studied by energy minimization using the low resolution (2.4 A) X-ray data of the protein. These studies suggest that these sugars preferentially bind in the alpha-form to ABP, unlike L-arabinose where both alpha- and beta-anomers bind almost equally. The best modes of binding of alpha- and beta-anomers of D-galactose and D-fucose differ slightly in the nature of the possible hydrogen bonds with the protein. The residues Arg 151 and Asn 232 of ABP from bidentate hydrogen bonds with both L-arabinose and D-galactose, but not with D-fucose or D-glucose. However in the case of L-arabinose, Arg 151 forms hydrogen bonds with the hydroxyl group at the C-4 atom and the ring oxygen, whereas in case of D-galactose it forms bonds with the hydroxyl groups at the C-4 and C-6 atoms of the pyranose ring. The calculated conformational energies also predict that D-galactose is a better inhibitor than D-fucose and D-glucose, in agreement with kinetic studies. The weak inhibitor D-glucose binds preferentially to one domain of ABP leading to the formation of a weaker complex. Thus these studies provide information about the most probable binding modes of these sugars and also provide a theoretical explanation for the observed differences in their binding affinities.
Resumo:
A novel sonication-promoted Barbier reaction putatively generated the titled species from the corresponding naphthotriazinylmethyl chloride and magnesium in THF: its formal addition to a variety of carbonyl compounds in situ occurred in excellent yields. Subsequent catalytic hydrogenolysis of the triazine moiety demasked the amine, thus defining a route to various phenylethylamines (including the alkaloid 'mescaline'), or ethanolamines (in two cases), in excellent overall yields. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A simple and direct approach to both enantiomeric series of A-ring derivatives of 1 alpha,25-dihydroxyvitamin D-3 and the corresponding 1 alpha,3 alpha-derivatives, starting from the abundantly available R-carvone, is described. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Two tripeptides of the type Boc-Pro-ΔZX-Gly-NHEt (where X = Leu, Phe) have been synthesized and their solution conformations investigated by 270 MHz 1H n.m.r. and i.r. spectroscopy. These conformational studies indicated that ΔZLeu, similar to ΔZPhe, has a strong tendency to stabilize folded Type II β-turn conformations when present at i + 2 position.
Resumo:
The Occurrence of the Norrish type I a-cleavage process in some thio compounds has been examined by using the MIND013 method and employing the configuration interaction. Results reveal that where the radiationless process is not efficient, thio compounds can undergo photodissociation into radicals in their lowest triplet and singlet excited states. The activation barriers in all these cases arise from an avoided crossing between two states of different symmetries. The calculations of activation barriers by the CNDO-CI and MINDO-CI procedures reveal that the MINDO-CI method leads to realistic values of the activation energies.
Resumo:
The structures of two dehydropentapeptides, Boc-Pro-Delta Phe-Val-Delta Phe-Ala-OMe (I) and Boc-Pro-Delta Phe-Gly-Delta Phe-Ala-OMe (II) (Boc: t-butoxycarbonyl), have been determined by nuclear magnentic resonance (NMR), circular dichroism (CD), and X-ray, crystallographic studies. The peptide I assumes a S-shaped flat beta-bend structure, characterized by two partially overlapping type II beta-bends and absence of a second 1 <- 4 (N4-H center dot center dot center dot O1') intramolecular hydrogen bond. This is in contrast to the generally observed 3(10)-helical conformation in peptides with Delta Phe at alternate positions. This report describes the novel conformation assumed by peptide I and compares it with that of the conserved tip of the V3 loop of the HIV-1 envelope glycoprotein gp120 (sequence, G:P319 to F:P324, PDB code IACY). The tip of the V3 loop also assumes a S-shaped conformation with Arg:P322, making an intramolecular side-chain-backbone interaction with the carbonyl oxygen of Gly:P319. Interestingly, in peptide I, C(gamma)HVal(3) makes a similar side-chain-backbone C-H center dot center dot center dot O hydrogen bond with the carbonyl oxygen of the Boc group. The observed overall similarity indicates the possible use of the peptide as a viral antagonist or synthetic antigen. Peptide 11 adopts a unique turn followed by a 3(10)-helix. Both peptides I and II are classical examples of stabilization of unusual structures in oligopeptides.
Resumo:
An efficient Friedel-Crafts alkylation of aromatic compounds with ethyl alpha -chloro-alpha-(ethylthio)acetate catalysed by ytterbium triflate, followed by desulfurisation of the product provides a convenient methodology for the synthesis of ethyl arylacetates of aromatic and heteroaromatic compounds. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Photophysics and photochemistry of cyclobutanethiones 1-5 have been studied with the view to generalize the a-cleavage reactions of cyclobutanethiones. The above cyclobutanethiones possess a unit intersystem crossing efficiency from S1 to T1, a high self-quenching rate (-4 X lo9 M-' s-'), and a short triplet lifetime (<0.50 ws). Photolysis of 1-5 yields in benzene a product resulting from 1,3-transposition and in methanol two cyclic thioacetals.The origin of these products is traced to the triplet excited state. A mechanistic scheme involving a-cleavage as the primary photoprocess and diradicals and thiacarbenes as intermediates has been formulated to rationalize the formation of thioacetals and rearranged products. The proposed mechanistic scheme is supported by UHF MIND013 calculations performed on four model systems, cyclobutanethiones and 1,3-cyclobutanedithiones 18-21. These calculations indicate that formation of diradical is favored thermodynamically and kinetically for systems analogous to 19 and 21, while rearrangement to thiacarbene is likely only for those similar to 21.
Resumo:
1,1,3-Trimethyl-2-thioxo-1,2-dihydronaphthale(1n)e adds to electron-rich olefins upon excitation to either Sz (PP*) or Sl (ns*) states. Excitation to S2 level resulted in the same mixture of products, namely thietane and 1,4-dithiane, as on excitation to S1 level. Addition occurs to the thiocarbonyl function and not to the carbon-carbon double bond. The addition is site-specific, and the formation of thietane is regiospecific. The ratio of thietane to 1,4-dithiane in the product mixture is dependent on the concentration of the thioenone. The addition is suggested to originate from the lowest triplet state (Tl) and involves diradical intermediates.
Resumo:
Electron-deficient olefins add to thioenone 1 upon m* excitation. Cycloaddition occurs to the thiocarbonyl chromophore preferentially from the less-hindered side to yield thietanes. Thietane formation is stereospecific and regioselective. This addition has been inferred to originate from the second excited singlet, S2(?rx*), state. The exciplex intermediacy has been inferred from the dependence of the fluorescence quenching rate constant on the electron-acceptor properties of the olefin. The observed site specificity and regioselectivity are rationalized on the basis of PMO theory. The observed photochemical behavior of thioenone is different from that of enones.
Resumo:
The interaction energies between (Ala)10 and alpha-helix fragment and different nucleotide sequences in right-handed B-form have been optimized using semi-empirical potential energy functions. The energies are calculated for two different orientations of the alpha-helix, viz., when the alpha-helix axis taken in the N----C direction is (i) parallel and (ii) antiparallel to the 5'-3' ascending strand of DNA, proximal to it. When both the DNA molecule as well as the alpha-helix are treated as rigid molecules it is found that a polyalanine alpha-helix has slightly more favourable contacts when it is in the proximity of a four nucleotide sequence of 5'-(N-A-T-N)-3' type, where N is either a purine or a pyrimidine. However, when the two interacting molecules are allowed to undergo local structural variations then the interaction energy appears to be independent of the base sequence confirming the non-specific nature of these interactions.
Resumo:
C22H31NO2.H2 O, M r = 359" 5, orthorhombic,P2~212 ~, a= 10.032 (1), b= 11.186 (1), C = 17.980 (1)/~,, U= 2017.48/~3, Z = 4, D x = 1.276 Mg m -a, 2(Cu Kct) = 1.5418/~, # = 0.69 mm -~,F(000) = 784, T = 293 K. Final R = 0.05 for 1972 unique reflections with I > 3o(/). Ring A is planar, and rings B and C adopt a chair conformation. Rings D and E are envelopes, with C(14) and C(20) displaced from their respective ring planes by 0-616 (2) and 0.648 (3)/~. The A/B ring junction is quasi-trans,whilst ring systems B/C and C/D are trans fused about the bonds C(8)-C(9) and C(13)-C(14) respectively.The D/E junction shows cis fusion.