1000 resultados para Algoritmo Científico. Computação Evolucionária. Metaheurísticas. Problema do Caixeiro Alugador
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Debido a las limitaciones de las técnicas de optimización convencionales, en el siguiente trabajo se presenta una metaheurística basada en un algoritmo genético (AG), para resolver problemas de programación de tipo flow shop, con el objetivo de minimizar el tiempo de finalización de todos los trabajos, más conocido como makespan. Este problema, considerado de difícil solución, es típico de la optimización combinatoria y se presenta en talleres con tecnología de maquinado, donde existen máquinas-herramientas convencionales y se fabrican diferentes tipos de piezas que tienen en común una misma ruta tecnológica (orden del proceso). La solución propuesta se probó con problemas clásicos publicados por otros autores, obteniéndose resultados satisfactorios en cuanto a la calidad de las soluciones encontradas y el tiempo de cómputo empleado.
Resumo:
El problema inverso de la búsqueda de fuentes MEG consiste en la obtención de la distribución de los dipolos de corriente (fuentes) en el interior de la cabeza de un paciente a partir de las mediciones de campo electromagnético obtenidas en la superficie (magnetoencefalograma, MEG). Para obtener estos datos, en el ámbito científico se utiliza el algoritmo beamforming, comúnmente aceptado, cuyos resultados ofrecen un pequeño margen de error debido a la naturaleza del problema. Esta memoria desarrolla el trabajo realizado para optimizar un algoritmo de búsqueda aleatoria, Solis-Wets, utilizado para investigar la posibilidad de su aplicación en el ámbito científico, en sustitución del anteriormente mencionado, beamforming. También se estudiará la acción de encadenar ambos algoritmos, tomando como datos de entrada del algoritmo Solis-Wets aquellos proporcionados como solución por el algoritmo beamforming con objeto de minimizar el error en el que éste incurre. Esta optimización es necesaria para que la alternativa sea viable debido al tiempo necesario en su ejecución, e incluye el uso de bibliotecas auxiliares, así como la paralelización del código. Para la evaluación del algoritmo se han medido tanto la velocidad de generación de soluciones como el error de la mejor solución tras un número determinado de soluciones generadas. Como variables para esta evaluación se han tomado distintos compiladores, distintas soluciones de partida, precisión de los datos, así como el uso de distintas bibliotecas matemáticas disponibles.
Resumo:
The reverse time migration algorithm (RTM) has been widely used in the seismic industry to generate images of the underground and thus reduce the risk of oil and gas exploration. Its widespread use is due to its high quality in underground imaging. The RTM is also known for its high computational cost. Therefore, parallel computing techniques have been used in their implementations. In general, parallel approaches for RTM use a coarse granularity by distributing the processing of a subset of seismic shots among nodes of distributed systems. Parallel approaches with coarse granularity for RTM have been shown to be very efficient since the processing of each seismic shot can be performed independently. For this reason, RTM algorithm performance can be considerably improved by using a parallel approach with finer granularity for the processing assigned to each node. This work presents an efficient parallel algorithm for 3D reverse time migration with fine granularity using OpenMP. The propagation algorithm of 3D acoustic wave makes up much of the RTM. Different load balancing were analyzed in order to minimize possible losses parallel performance at this stage. The results served as a basis for the implementation of other phases RTM: backpropagation and imaging condition. The proposed algorithm was tested with synthetic data representing some of the possible underground structures. Metrics such as speedup and efficiency were used to analyze its parallel performance. The migrated sections show that the algorithm obtained satisfactory performance in identifying subsurface structures. As for the parallel performance, the analysis clearly demonstrate the scalability of the algorithm achieving a speedup of 22.46 for the propagation of the wave and 16.95 for the RTM, both with 24 threads.
Resumo:
There are authentication models which use passwords, keys, personal identifiers (cards, tags etc) to authenticate a particular user in the authentication/identification process. However, there are other systems that can use biometric data, such as signature, fingerprint, voice, etc., to authenticate an individual in a system. In another hand, the storage of biometric can bring some risks such as consistency and protection problems for these data. According to this problem, it is necessary to protect these biometric databases to ensure the integrity and reliability of the system. In this case, there are models for security/authentication biometric identification, for example, models and Fuzzy Vault and Fuzzy Commitment systems. Currently, these models are mostly used in the cases for protection of biometric data, but they have fragile elements in the protection process. Therefore, increasing the level of security of these methods through changes in the structure, or even by inserting new layers of protection is one of the goals of this thesis. In other words, this work proposes the simultaneous use of encryption (Encryption Algorithm Papilio) with protection models templates (Fuzzy Vault and Fuzzy Commitment) in identification systems based on biometric. The objective of this work is to improve two aspects in Biometric systems: safety and accuracy. Furthermore, it is necessary to maintain a reasonable level of efficiency of this data through the use of more elaborate classification structures, known as committees. Therefore, we intend to propose a model of a safer biometric identification systems for identification.
Resumo:
This work presents an application of a hybrid Fuzzy-ELECTRE-TOPSIS multicriteria approach for a Cloud Computing Service selection problem. The research was exploratory, using a case of study based on the actual requirements of professionals in the field of Cloud Computing. The results were obtained by conducting an experiment aligned with a Case of Study using the distinct profile of three decision makers, for that, we used the Fuzzy-TOPSIS and Fuzzy-ELECTRE-TOPSIS methods to obtain the results and compare them. The solution includes the Fuzzy sets theory, in a way it could support inaccurate or subjective information, thus facilitating the interpretation of the decision maker judgment in the decision-making process. The results show that both methods were able to rank the alternatives from the problem as expected, but the Fuzzy-ELECTRE-TOPSIS method was able to attenuate the compensatory character existing in the Fuzzy-TOPSIS method, resulting in a different alternative ranking. The attenuation of the compensatory character stood out in a positive way at ranking the alternatives, because it prioritized more balanced alternatives than the Fuzzy-TOPSIS method, a factor that has been proven as important at the validation of the Case of Study, since for the composition of a mix of services, balanced alternatives form a more consistent mix when working with restrictions.
Resumo:
This work concerns a refinement of a suboptimal dual controller for discrete time systems with stochastic parameters. The dual property means that the control signal is chosen so that estimation of the model parameters and regulation of the output signals are optimally balanced. The control signal is computed in such a way so as to minimize the variance of output around a reference value one step further, with the addition of terms in the loss function. The idea is add simple terms depending on the covariance matrix of the parameter estimates two steps ahead. An algorithm is used for the adaptive adjustment of the adjustable parameter lambda, for each step of the way. The actual performance of the proposed controller is evaluated through a Monte Carlo simulations method.
O problema de alocação de berços: um estudo das heurísticas simulated annealing e algoritmo genético
Resumo:
Este trabalho apresenta um estudo de caso das heurísticas Simulated Annealing e Algoritmo Genético para um problema de grande relevância encontrado no sistema portuário, o Problema de Alocação em Berços. Esse problema aborda a programação e a alocação de navios às áreas de atracação ao longo de um cais. A modelagem utilizada nesta pesquisa é apresentada por Mauri (2008) [28] que trata do problema como uma Problema de Roteamento de Veículos com Múltiplas Garagens e sem Janelas de Tempo. Foi desenvolvido um ambiente apropriado para testes de simulação, onde o cenário de análise foi constituido a partir de situações reais encontradas na programação de navios de um terminal de contêineres. Os testes computacionais realizados mostram a performance das heurísticas em relação a função objetivo e o tempo computacional, a m de avaliar qual das técnicas apresenta melhores resultados.
Resumo:
Interações sociais são frequentemente descritas como trocas sociais. Na literatura, trocas sociais em Sistemas Multiagentes são objeto de estudo em diversos contextos, nos quais as relações sociais são interpretadas como trocas sociais. Dentre os problemas estudados, um problema fundamental discutido na literatura e a regulação¸ ao de trocas sociais, por exemplo, a emergência de trocas equilibradas ao longo do tempo levando ao equilíbrio social e/ou comportamento de equilíbrio/justiça. Em particular, o problema da regulação de trocas sociais e difícil quando os agentes tem informação incompleta sobre as estratégias de troca dos outros agentes, especificamente se os agentes tem diferentes estratégias de troca. Esta dissertação de mestrado propõe uma abordagem para a autorregulacao de trocas sociais em sistemas multiagentes, baseada na Teoria dos Jogos. Propõe o modelo de Jogo de Autorregulacão ao de Processos de Trocas Sociais (JAPTS), em uma versão evolutiva e espacial, onde os agentes organizados em uma rede complexa, podem evoluir suas diferentes estratégias de troca social. As estratégias de troca são definidas através dos parâmetros de uma função de fitness. Analisa-se a possibilidade do surgimento do comportamento de equilíbrio quando os agentes, tentando maximizar sua adaptação através da função de fitness, procuram aumentar o numero de interações bem sucedidas. Considera-se um jogo de informação incompleta, uma vez que os agentes não tem informações sobre as estratégias de outros agentes. Para o processo de aprendizado de estratégias, utiliza-se um algoritmo evolutivo, no qual os agentes visando maximizar a sua função de fitness, atuam como autorregulares dos processos de trocas possibilitadas pelo jogo, contribuindo para o aumento do numero de interações bem sucedidas. São analisados 5 diferentes casos de composição da sociedade. Para alguns casos, analisa-se também um segundo tipo de cenário, onde a topologia de rede é modificada, representando algum tipo de mobilidade, a fim de analisar se os resultados são dependentes da vizinhança. Alem disso, um terceiro cenário é estudado, no qual é se determinada uma política de influencia, quando as medias dos parâmetros que definem as estratégias adotadas pelos agentes tornam-se publicas em alguns momentos da simulação, e os agentes que adotam a mesma estratégia de troca, influenciados por isso, imitam esses valores. O modelo foi implementado em NetLogo.
Resumo:
O problema de planejamento de rotas de robôs móveis consiste em determinar a melhor rota para um robô, em um ambiente estático e/ou dinâmico, que seja capaz de deslocá-lo de um ponto inicial até e um ponto final, também em conhecido como estado objetivo. O presente trabalho emprega o uso de uma abordagem baseada em Algoritmos Genéticos para o planejamento de rotas de múltiplos robôs em um ambiente complexo composto por obstáculos fixos e obstáculos moveis. Através da implementação do modelo no software do NetLogo, uma ferramenta utilizada em simulações de aplicações multiagentes, possibilitou-se a modelagem de robôs e obstáculos presentes no ambiente como agentes interativos, viabilizando assim o desenvolvimento de processos de detecção e desvio de obstáculos. A abordagem empregada busca pela melhor rota para robôs e apresenta um modelo composto pelos operadores básicos de reprodução e mutação, acrescido de um novo operador duplo de refinamento capaz de aperfeiçoar as melhores soluções encontradas através da eliminação de movimentos inúteis. Além disso, o calculo da rota de cada robô adota um método de geração de subtrechos, ou seja, não calcula apenas uma unica rota que conecta os pontos inicial e final do cenário, mas sim várias pequenas subrotas que conectadas formam um caminho único capaz de levar o robô ao estado objetivo. Neste trabalho foram desenvolvidos dois cenários, para avaliação da sua escalabilidade: o primeiro consiste em um cenário simples composto apenas por um robô, um obstáculo movel e alguns obstáculos fixos; já o segundo, apresenta um cenário mais robusto, mais amplo, composto por múltiplos robôs e diversos obstáculos fixos e moveis. Ao final, testes de desempenho comparativos foram efetuados entre a abordagem baseada em Algoritmos Genéticos e o Algoritmo A*. Como critério de comparação foi utilizado o tamanho das rotas obtidas nas vinte simulações executadas em cada abordagem. A analise dos resultados foi especificada através do Teste t de Student.
Resumo:
El objetivo de este trabajo es presentar unas bases de conocimiento sobre el denominado General Game Playing (GGP) analizando los conceptos relacionados con esta área que ha surgido recientemente, de forma que nuestro trabajo pueda ser usado como base en futuras investigaciones y tesis relacionadas con la materia. Para ello, se hará un estudio de los enfoques que se han empleado para abordar el problema y se profundizará en otras técnicas algorítmicas, tales como por ejemplo la de Montecarlo Tree Search y los algoritmos bio-inspirados que no se han empleado (o se han empleado poco) en este contexto. Adicionalmente, se realiza una propuesta de un agente autónomo (es decir, un resolutor del problema), implementando un algoritmo bio-inspirado mixto, dentro de la plataforma para la General Video Game Artificial Intelligence Competition (GVGAI), analizando sus resultados y extrayendo conclusiones.
Resumo:
Dissertação (mestrado)—Universidade de Brasília,Instituto de Ciências Humanas, Programa de Pós-Graduação em Filosofia, 2015.
Resumo:
Dissertação (mestrado)–Universidade de Brasília, Universidade UnB de Planaltina, Programa de Pós-Graduação em Ciência de Materiais, 2015.
Resumo:
Material utilizado no módulo de Metodologia Científica do curso de especialização em Nefrologia produzido pela UNA-SUS/UFMA. Esta unidade apresenta subsídios teóricos para a produção do Projeto de Intervenção, plano de ação que visa a elaboração de um planejamento estratégico situacional a partir do contexto de trabalho, amplamente utilizado na área da saúde.