909 resultados para Al-zn-mg-cu Alloys
Resumo:
En Mendoza, Argentina, no existen antecedentes respecto de la presencia de elementos trazas, totales y disponibles, relacionados con el uso de los suelos en los oasis irrigados. El objetivo del trabajo, en esta etapa, fue determinar los contenidos totales de plomo (Pb), cadmio (Cd), cinc (Zn) y cobre (Cu) en la capa superficial de suelos (0-25 cm), diferenciados en siete tipos según una clasificación utilitaria: suelos vírgenes (SV); suelos de banquina (SB); suelos vecinos a banquina (SVB); suelos de agricultura intensiva (SAI); suelos de agricultura protegidos por lucha antigranizo (SLAG); suelos afectados por actividad industrial (SI) y suelos urbanos (SU). Sobre un total de 200 muestras se efectuó una digestión ácida en caliente y en los extractos se determinaron los metales en su fracción total, mediante espectrofotometría de absorción atómica (AAS). El análisis estadístico de los datos muestra que los niveles más elevados de Cu y Cd se detectan en SAI, con medias de 39,3 y 2,5 mg kg-1 respectivamente. En SI se observan los mayores valores de Pb, con una media de 80,6 mg kg-1 y en SU los mayores tenores de Zn, con un valor medio de 740 mg kg-1. La Ciudad de Mendoza, con mayor densidad poblacional, presentó los mayores contenidos de Zn, Pb y Cd. Las concentraciones encontradas se ubican por debajo de las exigencias de la legislación argentina y la mayoría de los suelos pueden clasificarse como no contaminados (SNC) o ligeramente contaminados (SLC). Se prevé completar este estudio con la determinación de las fracciones disponibles de los elementos estudiados, correlacionándolos con variables edáficas físico-químicas como textura, pH y materia orgánica.
Resumo:
A trace of beryllium can lead to dramatic grain coarsening in Mg-Al alloys at normal cooling rates. It is, however, unclear whether this effect applies to aluminium-free magnesium alloys or not. This work shows that a trace of beryllium also causes considerable grain coarsening in Mg-Zn, Mg-Ca, Mg-Ce and Mg-Nd alloys and hinders grain refinement of magnesium alloys by zirconium as well. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Al-10 wt.%Pb and Al-10 wt.%Pb-x wt.%Cu (x = 0-7.0) bulk alloys were prepared by sintering the mechanically alloyed powders at various temperatures. The microstructure changes of the as consolidated powders in the course of sintering were analyzed by differential scanning calorimetry, scanning electron microscopy, X-ray diffraction analysis and transmission electron microscopy. It has been found that, with respect to the Al-10 wt.%Pb-x wt.%Cu alloy, CuAl2 and Cu9Al4 phases formed in the milling process, and the amount of CuAl2 phase increased while the Cu9Al4 phase disappeared gradually in the sintering process. In both Al-10 wt.%Pb and Al-10 wt.%Pb-x wt.%Cu alloys, the sintering process results in the coarsening of Pb phase and the growth rate of Pb phase fulfills the Lifshitz-Slyozov-Wagner equation even though the size of the Pb phase was in nanometer range. The Pb particle exhibits cuboctahedral morphology and has a cubic to cubic orientation relationship with the Al matrix. The addition of Cu strongly depressed the growth rate of Pb. Contamination induced by milling has apparent influence on the microstructure of the sintered alloys. Al7Cu2Fe and aluminium oxide phases were identified in the sintered alloys. The cuboctahedral morphology of Pb particles was broken up by the presence of the oxide phase. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Magnesium alloys have been widely explored as potential biomaterials, but several limitations to using these materials have prevented their widespread use, such as uncontrollable degradation kinetics which alter their mechanical properties. In an attempt to further the applicability of magnesium and its alloys for biomedical purposes, two novel magnesium alloys Mg-Zn-Cu and Mg-Zn-Se were developed with the expectation of improving upon the unfavorable qualities shown by similar magnesium based materials that have previously been explored. The overall performance of these novel magnesium alloys has been assessesed in three distinct phases of research: 1) analysing the mechanical properties of the as-cast magnesium alloys, 2) evaluating the biocompatibility of the as-cast magnesium alloys through the use of in-vitro cellular studies, and 3) profiling the degradation kinetics of the as-cast magnesium alloys through the use of electrochemical potentiodynamic polarization techqnique as well as gravimetric weight-loss methods. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties with elongation at failure values of 12% and 13% for the Mg-Zn-Se and Mg-Zn-Se alloys, respectively. This is substantially higher than other as-cast magnesium alloys that have elongation at failure values that range from 7-10%. Biocompatibility tests revealed that both the Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. Gravimetric and electrochemical testing was indicative of the weight loss and initial corrosion behavior of the alloys once immersed within a simulated body fluid. The development of these novel as-cast magnesium alloys provide an advancement to the field of degradable metallic materials, while experimental results indicate their potential as cost-effective medical devices.^
Resumo:
Magnesium alloys have been widely explored as potential biomaterials, but several limitations to using these materials have prevented their widespread use, such as uncontrollable degradation kinetics which alter their mechanical properties. In an attempt to further the applicability of magnesium and its alloys for biomedical purposes, two novel magnesium alloys Mg-Zn-Cu and Mg-Zn-Se were developed with the expectation of improving upon the unfavorable qualities shown by similar magnesium based materials that have previously been explored. The overall performance of these novel magnesium alloys has been assessesed in three distinct phases of research: 1) analysing the mechanical properties of the as-cast magnesium alloys, 2) evaluating the biocompatibility of the as-cast magnesium alloys through the use of in-vitro cellular studies, and 3) profiling the degradation kinetics of the as-cast magnesium alloys through the use of electrochemical potentiodynamic polarization techqnique as well as gravimetric weight-loss methods. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties with elongation at failure values of 12% and 13% for the Mg-Zn-Se and Mg-Zn-Se alloys, respectively. This is substantially higher than other as-cast magnesium alloys that have elongation at failure values that range from 7-10%. Biocompatibility tests revealed that both the Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. Gravimetric and electrochemical testing was indicative of the weight loss and initial corrosion behavior of the alloys once immersed within a simulated body fluid. The development of these novel as-cast magnesium alloys provide an advancement to the field of degradable metallic materials, while experimental results indicate their potential as cost-effective medical devices.
The electrochemical corrosion behaviour of quaternary gold alloys when exposed to 3.5% NaCl solution
Resumo:
Lower carat gold alloys, specifically 9 carat gold alloys, containing less than 40 % gold, and alloying additions of silver, copper and zinc, are commonly used in many jewellery applications, to offset high costs and poor mechanical properties associated with pure gold. While gold is considered to be chemically inert, the presence of active alloying additions raises concerns about certain forms of corrosion, particularly selective dissolution of these alloys. The purpose of this study was to systematically study the corrosion behaviour of a series of quaternary gold–silver–copper–zinc alloys using dc potentiodynamic scanning in saline (3.5 % NaCl) environment. Full anodic/cathodic scans were conducted to determine the overall corrosion characteristics of the alloy, followed by selective anodic scans and subsequent morphological and compositional analysis of the alloy surface and corroding media to determine the extent of selective dissolution. Varying degrees of selective dissolution and associated corrosion rates were observed after anodic polarisation in 3.5 % NaCl, depending on the alloy composition. The corrosion behaviour of the alloys was determined by the extent of anodic reactions which induce (1) formation of oxide scales on the alloy surface and or (2) dissolution of Zn and Cu species. In general, the improved corrosion characteristics of alloy #3 was attributed to the composition of Zn/Cu in the alloy and thus favourable microstructure promoting the formation of protective oxide/chloride scales and reducing the extent of Cu and Zn dissolution.
Resumo:
The concentrations of Na, K, Ca, Mg, Ba, Sr, Fe, Al, Mn, Zn, Pb, Cu, Ni, Cr, Co, Se, U and Ti were determined in the osteoderms and/or flesh of estuarine crocodiles (Crocodylus porosus) captured in three adjacent catchments within the Alligator Rivers Region (ARR) of northern Australia. Results from multivariate analysis of variance showed that when all metals were considered simultaneously, catchment effects were significant (P≤0.05). Despite considerable within-catchment variability, linear discriminant analysis (LDA) showed that differences in elemental signatures in the osteoderms and/or flesh of C. porosus amongst the catchments were sufficient to classify individuals accurately to their catchment of occurrence. Using cross-validation, the accuracy of classifying a crocodile to its catchment of occurrence was 76% for osteoderms and 60% for flesh. These data suggest that osteoderms provide better predictive accuracy than flesh for discriminating crocodiles amongst catchments. There was no advantage in combining the osteoderm and flesh results to increase the accuracy of classification (i.e. 67%). Based on the discriminant function coefficients for the osteoderm data, Ca, Co, Mg and U were the most important elements for discriminating amongst the three catchments. For flesh data, Ca, K, Mg, Na, Ni and Pb were the most important metals for discriminating amongst the catchments. Reasons for differences in the elemental signatures of crocodiles between catchments are generally not interpretable, due to limited data on surface water and sediment chemistry of the catchments or chemical composition of dietary items of C. porosus. From a wildlife management perspective, the provenance or source catchment(s) of 'problem' crocodiles captured at settlements or recreational areas along the ARR coastline may be established using catchment-specific elemental signatures. If the incidence of problem crocodiles can be reduced in settled or recreational areas by effective management at their source, then public safety concerns about these predators may be moderated, as well as the cost of their capture and removal. Copyright © 2002 Elsevier Science B.V.
Resumo:
Cast aluminium alloy-mica particle composites were made by dispersing mica particles in a vortex produced by stirring the liquid Al-4 wt% Cu-1.5 wt% Mg alloy and then casting the melt containing the suspended particles into permanent moulds. Spiral fluidity and casting fluidity of the alloy containing mica particles in suspension were determined. Both the spiral fluidity and the casting fluidity of the base alloy were found to decrease with an increase in volume or weight percent of mica particles (of a given size), and with a decrease in particle size (for a given amount of particles). The fluidities of Al-4 wt% Cu-1.5 wt% Mg alloys containing suspended mica particles were found to correlate very well with the surface area of suspended mica particles. The regression equation for spiral fluidity Y (cm) as a function of surface area of mica particles per gram of spiral X (cm2 g–1) at 700° C was found to be Y=42.62–0.42X with a correlation coefficient of 0.9634. The regression equations for casting fluidity Yprime (cm) as a functiono of surface area of mica particles per gram of fluidity test piece Xprime (cm2 g–1) at 710 and 670° C were found to be Yprime=19.71–0.17Xprime and Yprime=13.52–0.105Xprime with correlation coefficients of 0.9194 and 0.9612 respectively. The percentage decrease in casting fluidity of composite melts containing up to 2.5 wt% mica with a drop in temperature is quite similar to the corresponding decrease in the casting fluidity of base alloy melts (without mica). The change in fluidity due to mica dispersions has been discussed in terms of changes in viscosity of the composite melts. However, the fluidities of these composite alloys containing up to 2.5 wt% mica are adequate for making a variety of simple castings including bearings for which these alloys have been developed.
Resumo:
The participation of aluminum in the decomposition reaction of ammonium perchlorate (AP) is enhanced if magnesium is added—either as a mixture of Al and Mg powders or as an alloy of Mg in Al. The differential thermal analyses of the compositions show a sensitization in the temperatures of decomposition, as well as increase in the heat of reaction. The AP-Mg and Ap-(Mg---Li) alloy pellets also show increased reactivity. The burning rates of AP-(Al-10% Mg) alloy pellets increase with increase in the alloy content, while calorimetric values peak at 40% alloy content. The combustion product gases of AP-40% (Al-10% Mg) alloy contain large quantities of hydrogen.
Resumo:
Historical sediment nutrient concentrations and heavy-metal distributions were studied in five embayments in the Gulf of Finland and an adjacent lake. The main objective of the study was to examine the response of these water bodies to temporal changes in human activities. Sediment cores were collected from the sites and dated using 210Pb and 137Cs. The cores were analyzed for total carbon (TC), total nitrogen (TN), total phosphorus (TP), organic phosphorus (OP), inorganic phosphorus (IP), biogenic silica (BSi), loss on ignition (LOI), grain size, Cu, Zn, Al, Fe, Mn, K, Ca, Mg and Na. Principal component analysis (PCA) was used to summarize the trends in the geochemical variables and to compare trends between the different sites. The links between the catchment land use and sediment geochemical data were studied using a multivariate technique of redundancy analysis (RDA). Human activities produce marked geochemical variations in coastal sediments. These variations and signals are often challenging to interpret due to various sedimentological and post-depositional factors affecting the sediment profiles. In general, the sites studied here show significant upcore increases in sedimentation rates, TP and TN concentrations. Also Cu, which is considered to be a good indicator of anthropogenic influence, showed clear increases from 1850 towards the top part of the cores. Based on the RDA-analysis, in the least disturbed embayments with high forest cover, the sediments are dominated by lithogenic indicators Fe, K, Al and Mg. In embayments close to urban settlement, the sediments have high Cu concentrations and a high sediment Fe/Mn ratio. This study suggests that sediment accumulation rates vary significantly from site to site and that the overall sedimentation can be linked to the geomorphology and basin bathymetry, which appear to be the major factors governing sedimentation rates; i.e. a high sediment accumulation rate is not characteristic either to urban or to rural sites. The geochemical trends are strongly site specific and depend on the local geochemical background, basin characteristics and anthropogenic metal and nutrient loading. Of the studied geochemical indicators, OP shows the least monotonic trends in all studied sites. When compared to other available data, OP seems to be the most reliable geochemical indicator describing the trophic development of the study sites, whereas Cu and Zn appear to be good indicators for anthropogenic influence. As sedimentation environments, estuarine and marine sites are more complex than lacustrine basins with multiple sources of sediment input and more energetic conditions in the former. The crucial differences between lacustrine and estuarine/coastal sedimentation environments are mostly related to Fe. P sedimentation is largely governed by Fe redox-reactions in estuarine environments. In freshwaters, presence of Fe is clearly linked to the sedimentation of other lithogenic metals, and therefore P sedimentation and preservation has a more direct linkage to organic matter sedimentation.
Resumo:
The oxidation of liquid Al–Mg–Si alloys at 900–1400 °C was studied by thermogravimetric analysis (TGA). The development of a semi-protective surface layer of MgO/MgAl2O4 allows the continuous formation of an Al2O3-matrix composite containing an interpenetrating network of metal microchannels at 1000–1350 °C. An initial incubation period precedes bulk oxidation, wherein Al2O3 grows from a near-surface alloy layer by reaction of oxygen supplied by the dissolution of the surface oxides and Al supplied from a bulk alloy reservoir through the microchannel network. The typical oxidation rate during bulk growth displays an initial acceleration followed by a parabolic deceleration in a regime apparently limited by Al transport to the near-surface layer. Both regimes may be influenced by the Si content in this layer, which rises due to preferential Al and Mg oxidation. The growth rates increase with temperature to a maximum at ~1300 °C, with a nominal activation energy of 270 kJ/mole for an Al-2.85 wt. % Mg-5.4 wt. % Si alloy in O2 at furnace temperatures of 1000–1300 °C. An oscillatory rate regime observed at 1000–1075 °C resulted in a banded structure of varying Al2O3-to-metal volume fraction.
Resumo:
The nucleation and growth mechanisms during high temperature oxidation of liquid Al-3% Mg and Al-3% Mg-3% Si alloys were studied with the aim of enhancing our understanding of a new composite fabrication process. The typical oxidation sequence consists of an initial event of rapid but brief oxidation, followed by an incubation period of limited oxide growth after which bulk Al2O3/Al composite forms. A duplex oxide layer, MgO (upper) and MgAl2O4 (lower), forms on the alloy surface during initial oxidation and incubation. The spinel layer remains next to the liquid alloy during bulk oxide growth and is the eventual repository for most of the magnesium in the original alloy. Metal microchannels developed during incubation continuously supply alloy through the composite to the reaction interface. During the growth process, a layered structure exists at the upper extremity of the composite, consisting of MgO at the top surface, MgAl2O4 (probably discontinuous), Al alloy, and finally the bulk Al2O3 composite containing microchannels of the alloy. The bulk oxide growth mechanism appears to involve continuous formation and dissolution of the Mg-rich oxides at the surface, diffusion of oxygen through the underlying liquid metal, and epitaxial growth of Al2O3 on the existing composite body. The roles of Mg and Si in the composite growth process are discussed.
Resumo:
The influence of pH on the corrosion behaviour of two aluminium-lithium-copper-magnesium-zirconium (8090 and 2091) alloys was studied and compared with a standard aircraft alloy, 2014 (Al-4.4% Cu) and 99.9% pure Al. In constant exposure and potentiodynamic polarization studies conducted in 3.5% NaCl solution having different pH values, all the alloys exhibited high corrosion rates in acidic and alkaline environments, with a minimum in less hostile environments close to neutral pH. The pitting potentials for aluminium-lithium alloys were slightly lower than those for 2014 and pure Al. The effect of pH on the passive current density was also less for aluminium-lithium alloys.
Resumo:
The applicability of the confusion principle and size factor in glass formation has been explored by following different combinations of isoelectronic Ti, Zr and Hf metals. Four alloys of nominal composition Zr41.5Ti41.5Ni17, Zr41.5Hf41.5Ni17, Zr25Ti25Cu50 and Zr34Ti16Cu50 have been rapidly solidified to obtain an amorphous phase and their crystallisation behaviour has been studied. The Ti-Zr-Ni alloy crystallises in three steps. Initially this alloy precipitates icosahedral quasicrystalline phase, which on further heat treatment precipitates cF96 Zr2Ni phase. The Zr-Hf-Ni alloy can not be amorphised under the same experimental conditions. The amorphous Zr-Ti-Cu alloys at the initial stages of crystallisation phase-separateinto two amorphous phases and then on further heat treatment cF24 Cu5Zr and oC68 Cu10Zr7 phase are precipitated. The lower glass-forming abilityof Zr-Hf-Ni alloy and the crystallisation behaviour of the above alloys has been studied. The rationale behind nanoquasicrystallisation and the formation of other intermetallic phases has been explained.
Resumo:
Electron diffraction and high-resolution electron microscopy have been employed to differentiate among icosahedral, decagonal and crystalline particles that occur in as-cast and rapidly solidified Al-Mn-Cu alloys. The resemblance between decagonal quasicrystals and crystals in their electron diffraction patterns is striking. The crystalline structure is based on the orthorhombic ‘Al3Mn’ structure, but also a new monoclinic phase called ‘X’ has been discovered and described here. The present observations are also closely related to the orthorhombic structures in Al60Mn11Ni4. The occurrence of fine-scale twinning and fragmentation into domains explains the complex diffraction effects.