980 resultados para Agenesis of Corpus Callosum


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cortical midline glia are critical to the formation of the corpus callosum during development. The glial wedge is a Population of midline glia that is located at the corticoseptal boundary and expresses repulsive/growth-inhibitory molecules that guide callosal axons as they cross the midline. The glial wedge are the first cells within the cortex to express GFAP and thus may express molecules specific for glial maturation. The corticoseptal boundary is a genetically defined boundary between the cingulate cortex (dorsal telencephalon) and the septum (ventral telencephalon). The correct dorso-ventral position of this boundary is vital to the formation of both the glial wedge and the corpus callosum. Our aim was to identify genes expressed specifically within the glial wedge that might be involved in either glial differentiation, formation of the corticoseptal boundary or development of the corpus callosum. To identify such genes we have performed a differential display PCR screen comparing RNA isolated from the glial wedge with RNA isolated from control tissues such as the neocortex and septum, of embryonic day 17 mouse brains. Using 200 different combinations of primers, we identified and cloned 67 distinct gene fragments. In situ hybridization analysis confirmed the differential expression of many of the genes, and showed that clones G24F3, G39F8 and transcription factor LZIP have specific expression patterns in the telencephalon of embryonic and postnatal brains. An RNase Protection Assay (RPA) revealed that the expression of G39F8, G24173 and LZIP increase markedly in the telencephalon at E16 and continue to be expressed until at least PO, during the period when the corpus callosum is forming. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Slit genes encode secreted ligands that regulate axon branching, commissural axon pathfinding and neuronal migration. The principal identified receptor for Slit is Robo ( Roundabout in Drosophila). To investigate Slit signalling in forebrain development, we generated Robo1 knockout mice by targeted deletion of exon 5 of the Robo1 gene. Homozygote knockout mice died at birth, but prenatally displayed major defects in axon pathfinding and cortical interneuron migration. Axon pathfinding defects included dysgenesis of the corpus callosum and hippocampal commissure, and abnormalities in corticothalamic and thalamocortical targeting. Slit2 and Slit1/2 double mutants display malformations in callosal development, and in corticothalamic and thalamocortical targeting, as well as optic tract defects. In these animals, corticothalamic axons form large fasciculated bundles that aberrantly cross the midline at the level of the hippocampal and anterior commissures, and more caudally at the medial preoptic area. Such phenotypes of corticothalamic targeting were not observed in Robo1 knockout mice but, instead, both corticothalamic and thalamocortical axons aberrantly arrived at their respective targets at least 1 day earlier than controls. By contrast, in Slit mutants, fewer thalamic axons actually arrive in the cortex during development. Finally, significantly more interneurons ( up to twice as many at E12.5 and E15.5) migrated into the cortex of Robo1 knockout mice, particularly in both rostral and parietal regions, but not caudal cortex. These results indicate that Robo1 mutants have distinct phenotypes, some of which are different from those described in Slit mutants, suggesting that additional ligands, receptors or receptor partners are likely to be involved in Slit/Robo signalling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discovery of genetic factors that contribute to schizophrenia susceptibility is a key challenge in understanding the etiology of this disease. Here, we report the identification of a novel schizophrenia candidate gene on chromosome 1q32, plexin A2 (PLXNA2), in a genome-wide association study using 320 patients with schizophrenia of European descent and 325 matched controls. Over 25 000 single-nucleotide polymorphisms (SNPs) located within approximately 14 000 genes were tested. Out of 62 markers found to be associated with disease status, the most consistent finding was observed for a candidate locus on chromosome 1q32. The marker SNP rs752016 showed suggestive association with schizophrenia (odds ratio (OR) = 1.49, P = 0.006). This result was confirmed in an independent case control sample of European Americans (combined OR = 1.38, P = 0.035) and similar genetic effects were observed in smaller subsets of Latin Americans (OR = 1.26) and Asian Americans (OR = 1.37). Supporting evidence was also obtained from two family-based collections, one of which reached statistical significance (OR = 2.2, P = 0.02). High-density SNP mapping showed that the region of association spans approximately 60 kb of the PLXNA2 gene. Eight out of 14 SNPs genotyped showed statistically significant differences between cases and controls. These results are in accordance with previous genetic findings that identified chromosome 1q32 as a candidate region for schizophrenia. PLXNA2 is a member of the transmembrane semaphorin receptor family that is involved in axonal guidance during development and may modulate neuronal plasticity and regeneration. The PLXNA2 ligand semaphorin 3A has been shown to be upregulated in the cerebellum of individuals with schizophrenia. These observations, together with the genetic results, make PLXNA2 a likely candidate for the 1q32 schizophrenia susceptibility locus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Changes in brain gene expression are thought to be responsible for the tolerance, dependence, and neurotoxicity produced by chronic alcohol abuse, but there has been no large scale study of gene expression in human alcoholism. Methods: RNA was extracted from postmortem samples of superior frontal cortex of alcoholics and nonalcoholics. Relative levels of RNA were determined by array techniques. We used both cDNA and oligonucleotide microarrays to provide coverage of a large number of genes and to allow cross-validation for those genes represented on both types of arrays. Results: Expression levels were determined for over 4000 genes and 163 of these were found to differ by 40% or more between alcoholics and nonalcoholics. Analysis of these changes revealed a selective reprogramming of gene expression in this brain region, particularly for myelin-related genes which were downregulated in the alcoholic samples. In addition, cell cycle genes and several neuronal genes were changed in expression. Conclusions: These gene expression changes suggest a mechanism for the loss of cerebral white matter in alcoholics as well as alterations that may lead to the neurotoxic actions of ethanol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The density of axons in the optic nerve, olfactory tract and corpus callosum was quantified in non-demented elderly subjects and in Alzheimer’s disease (AD) using an image analysis system. In each fibre tract, there was significant reduction in the density of axons in AD compared with non-demented subjects, the greatest reductions being observed in the olfactory tract and corpus callosum. Axonal loss in the optic nerve and olfactory tract was mainly of axons with smaller myelinated cross-sectional areas. In the corpus callosum, a reduction in the number of ‘thin’ and ‘thick’ fibres was observed in AD, but there was a proportionally greater loss of the ‘thick’ fibres. The data suggest significant degeneration of white matter fibre tracts in AD involving the smaller axons in the two sensory nerves and both large and small axons in the corpus callosum. Loss of axons in AD could reflect an associated white matter disorder and/or be secondary to neuronal degeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on a corpus of English, German, and Polish spoken academic discourse, this article analyzes the distribution and function of humor in academic research presentations. The corpus is the result of a European research cooperation project consisting of 300,000 tokens of spoken academic language, focusing on the genres research presentation, student presentation, and oral examination. The article investigates difference between the German and English research cultures as expressed in the genre of specialist research presentations, and the role of humor as a pragmatic device in their respective contexts. The data is analyzed according to the paradigms of corpus-assisted discourse studies (CADS). The findings show that humor is used in research presentations as an expression of discourse reflexivity. They also reveal a considerable difference in the quantitative distribution of humor in research presentations depending on the educational, linguistic, and cultural background of the presenters, thus confirming the notion of different research cultures. Such research cultures nurture distinct attitudes to genres of academic language: whereas in one of the cultures identified researchers conform with the constraints and structures of the genre, those working in another attempt to subvert them, for example by the application of humor. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research in social psychology has shown that public attitudes towards feminism are mostly based on stereotypical views linking feminism with leftist politics and lesbian orientation. It is claimed that such attitudes are due to the negative and sexualised media construction of feminism. Studies concerned with the media representation of feminism seem to confirm this tendency. While most of this research provides significant insights into the representation of feminism, the findings are often based on a small sample of texts. Also, most of the research was conducted in an Anglo-American setting. This study attempts to address some of the shortcomings of previous work by examining the discourse of feminism in a large corpus of German and British newspaper data. It does so by employing the tools of Corpus Linguistics. By investigating the collocation profiles of the search term feminism, we provide evidence of salient discourse patterns surrounding feminism in two different cultural contexts. © The Author(s) 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, I concentrate on court cases with litigants in person (lay people who act on their own behalf in legal proceedings without a counsel or solicitor) and discuss the challenges of building a corpus of courtroom discourse where it is crucial to distinguish between speakers due to their distinct institutional roles. The corpus incorporates seven sub-corpora of verbatim transcripts from different court cases with litigants in person and comprises over eleven-million tokens. The focus of this paper is on the interplay between the legal and lay discourse types and how judges project their institutional roles through well-initiated turns directed at litigants in person and counsels. As a versatile discourse marker, well provides a good opportunity to explore how judges have to adapt their roles to ensure lay litigants in person receive the necessary support and that their lack of competence does not impede on the fairness of the proceedings. Given the breadth and importance of the topic of litigation in person, I discuss how the tools and approaches of corpus linguistics can be helpful in this multi-disciplinary area where multiple functions and uses of individual linguistic features need to be explored in depth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Degeneration of white matter fibre tracts occurs in several neurodegenerative disorders and results in various histological abnormalities including loss of axons, vacuolation, gliosis, axonal varicosities and spheroids, corpora amylacea, extracellular protein deposits, and glial inclusions (GI). This chapter describes quantitative studies that have been carried out on white matter pathology in a variety of neurodegenerative disease. First, in Alzheimer’s disease (AD), axonal loss quantified in histological sections stained with toluidine blue, occurs in several white matter fibre tracts including the optic nerve, olfactory tract, and corpus callosum. Second, in Creutzfeldt-Jakob disease (CJD), sections of cerebral cortex stained with haematoxylin and eosin (H/E) or immunolabelled with antibodies against the disease form of prion protein (PrPsc), reveal extensive vacuolation, gliosis of white matter, and deposition of PrPsc deposits. Third, GI immunolabelled with antibodies against various pathological proteins including tau, -synuclein, TDP-43, and FUS, have been recorded in white matter of a number of disorders including frontotemporal lobar degeneration (FTLD), progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and neuronal intermediate filament inclusion disease (NIFID). Axonal varicosities have also been observed in NIFID. There are two important questions regarding white matter pathology that need further investigation: (1) what is the relative importance of white and gray matter pathologies in different disorders and (2) do white matter abnormalities precede or are they the consequence of gray matter pathology?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the primary visual cortex, neurons with similar physiological features are clustered together in columns extending through all six cortical layers. These columns form modular orientation preference maps. Long-range lateral fibers are associated to the structure of orientation maps since they do not connect columns randomly; they rather cluster in regular intervals and interconnect predominantly columns of neurons responding to similar stimulus features. Single orientation preference maps – the joint activation of domains preferring the same orientation - were observed to emerge spontaneously and it was speculated whether this structured ongoing activation could be caused by the underlying patchy lateral connectivity. Since long-range lateral connections share many features, i.e. clustering, orientation selectivity, with visual inter-hemispheric connections (VIC) through the corpus callosum we used the latter as a model for long-range lateral connectivity. In order to address the question of how the lateral connectivity contributes to spontaneously generated maps of one hemisphere we investigated how these maps react to the deactivation of VICs originating from the contralateral hemisphere. To this end, we performed experiments in eight adult cats. We recorded voltage-sensitive dye (VSD) imaging and electrophysiological spiking activity in one brain hemisphere while reversible deactivating the other hemisphere with a cooling technique. In order to compare ongoing activity with evoked activity patterns we first presented oriented gratings as visual stimuli. Gratings had 8 different orientations distributed equally between 0º and 180º. VSD imaged frames obtained during ongoing activity conditions were then compared to the averaged evoked single orientation maps in three different states: baseline, cooling and recovery. Kohonen self-organizing maps were also used as a means of analysis without prior assumption (like the averaged single condition maps) on ongoing activity. We also evaluated if cooling had a differential effect on evoked and ongoing spiking activity of single units. We found that deactivating VICs caused no spatial disruption on the structure of either evoked or ongoing activity maps. The frequency with which a cardinally preferring (0º or 90º) map would emerge, however, decreased significantly for ongoing but not for evoked activity. The same result was found by training self-organizing maps with recorded data as input. Spiking activity of cardinally preferring units also decreased significantly for ongoing when compared to evoked activity. Based on our results we came to the following conclusions: 1) VICs are not a determinant factor of ongoing map structure. Maps continued to be spontaneously generated with the same quality, probably by a combination of ongoing activity from local recurrent connections, thalamocortical loop and feedback connections. 2) VICs account for a cardinal bias in the temporal sequence of ongoing activity patterns, i.e. deactivating VIC decreases the probability of cardinal maps to emerge spontaneously. 3) Inter- and intrahemispheric long-range connections might serve as a grid preparing primary visual cortex for likely junctions in a larger visual environment encompassing the two hemifields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the primary visual cortex, neurons with similar physiological features are clustered together in columns extending through all six cortical layers. These columns form modular orientation preference maps. Long-range lateral fibers are associated to the structure of orientation maps since they do not connect columns randomly; they rather cluster in regular intervals and interconnect predominantly columns of neurons responding to similar stimulus features. Single orientation preference maps – the joint activation of domains preferring the same orientation - were observed to emerge spontaneously and it was speculated whether this structured ongoing activation could be caused by the underlying patchy lateral connectivity. Since long-range lateral connections share many features, i.e. clustering, orientation selectivity, with visual inter-hemispheric connections (VIC) through the corpus callosum we used the latter as a model for long-range lateral connectivity. In order to address the question of how the lateral connectivity contributes to spontaneously generated maps of one hemisphere we investigated how these maps react to the deactivation of VICs originating from the contralateral hemisphere. To this end, we performed experiments in eight adult cats. We recorded voltage-sensitive dye (VSD) imaging and electrophysiological spiking activity in one brain hemisphere while reversible deactivating the other hemisphere with a cooling technique. In order to compare ongoing activity with evoked activity patterns we first presented oriented gratings as visual stimuli. Gratings had 8 different orientations distributed equally between 0º and 180º. VSD imaged frames obtained during ongoing activity conditions were then compared to the averaged evoked single orientation maps in three different states: baseline, cooling and recovery. Kohonen self-organizing maps were also used as a means of analysis without prior assumption (like the averaged single condition maps) on ongoing activity. We also evaluated if cooling had a differential effect on evoked and ongoing spiking activity of single units. We found that deactivating VICs caused no spatial disruption on the structure of either evoked or ongoing activity maps. The frequency with which a cardinally preferring (0º or 90º) map would emerge, however, decreased significantly for ongoing but not for evoked activity. The same result was found by training self-organizing maps with recorded data as input. Spiking activity of cardinally preferring units also decreased significantly for ongoing when compared to evoked activity. Based on our results we came to the following conclusions: 1) VICs are not a determinant factor of ongoing map structure. Maps continued to be spontaneously generated with the same quality, probably by a combination of ongoing activity from local recurrent connections, thalamocortical loop and feedback connections. 2) VICs account for a cardinal bias in the temporal sequence of ongoing activity patterns, i.e. deactivating VIC decreases the probability of cardinal maps to emerge spontaneously. 3) Inter- and intrahemispheric long-range connections might serve as a grid preparing primary visual cortex for likely junctions in a larger visual environment encompassing the two hemifields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The organizational and architectural configuration of white matter pathways connecting brain regions has ramifications for all facets of the human condition, including manifestations of incipient neurodegeneration. Although diffusion tensor imaging (DTI) has been used extensively to visualize white matter connectivity, due to the widespread presence of crossing fibres, the lateral projections of the corpus callosum are not normally detected using this methodology. Detailed knowledge of the transcallosal connectivity of the human cortical motor network has therefore remained elusive. We employed constrained spherical deconvolution (CSD) tractography - an approach that is much less susceptible to the influence of crossing fibres, in order to derive complete in-vivo characterizations of white matter pathways connecting specific motor cortical regions to their counterparts and other loci in the opposite hemisphere. The revealed patterns of connectivity closely resemble those derived from anatomical tracing in primates. It was established that dorsal premotor cortex (PMd) and supplementary motor area (SMA) have extensive interhemispheric connectivity - exhibiting both dense homologous projections, and widespread structural relations with every other region in the contralateral motor network. Through this in-vivo portrayal, the importance of non-primary motor regions for interhemispheric communication is emphasized. Additionally, distinct connectivity profiles were detected for the anterior and posterior subdivisions of primary motor cortex. The present findings provide a comprehensive representation of transcallosal white matter projections in humans, and have the potential to inform the development of models and hypotheses relating structural and functional brain connectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xq28 duplications encompassing MECP2 have been described in male patients with a severe neurodevelopmental disorder associated with hypotonia and spasticity, severe learning disability, stereotyped movements, and recurrent pulmonary infections. We report on standardized brain magnetic resonance imaging (MRI) data of 30 affected patients carrying an Xq28 duplication involving MECP2 of various sizes (228 kb to 11.7 Mb). The aim of this study was to seek recurrent malformations and attempt to determine whether variations in imaging features could be explained by differences in the size of the duplications. We showed that 93% of patients had brain MRI abnormalities such as corpus callosum abnormalities (n = 20), reduced volume of the white matter (WM) (n = 12), ventricular dilatation (n = 9), abnormal increased hyperintensities on T2-weighted images involving posterior periventricular WM (n = 6), and vermis hypoplasia (n = 5). The occipitofrontal circumference varied considerably between >+2SD in five patients and <-2SD in four patients. Among the nine patients with dilatation of the lateral ventricles, six had a duplication involving L1CAM. The only patient harboring bilateral posterior subependymal nodular heterotopia also carried an FLNA gene duplication. We could not demonstrate a correlation between periventricular WM hyperintensities/delayed myelination and duplication of the IKBKG gene. We thus conclude that patients with an Xq28 duplication involving MECP2 share some similar but non-specific brain abnormalities. These imaging features, therefore, could not constitute a diagnostic clue. The genotype-phenotype correlation failed to demonstrate a relationship between the presence of nodular heterotopia, ventricular dilatation, WM abnormalities, and the presence of FLNA, L1CAM, or IKBKG, respectively, in the duplicated segment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have shown Galanin(GAL) and Neuropeptide Y Y1(NPYY1) interactions at behavioural, cellular and receptor levels through GALR2/NPYY1R heterodimers in the amygdala. The aim of this work was to analyze GAL/NPYY1R interactions in the Dentate Gyrus(DG) of the Hippocampus, using autoradiographic, in situ hybridization and in situ proximity ligation assay(PLA). Rats(n=6) were sacrificed 15 minutes or 5 hours after icv injections of GAL(3nmol) and DG sections were incubated with NPYY1R agonist [I125]-[Leu31,Pro34]PYY(25 pM) or NPYY1R-33PdATP specific probe, for autoradiography and in situ hybridization respectively. Autoradiograms were analyzed using NIH image analysis system and Student’s unpaired t-test was used. For PLA, DG sections were incubated with anti-GALR2 Rabbit(1:100) and anti-NPYY1R Goat(1:200). PLA signals were detected with PLA PLUS or MINUS probes for rabbit or goat/mouse antibodies. PLA signals were visualized by using a confocal microscope Leica TCS-SL confocal microscope(Leica). We observed that GAL significant increased the NPYY1R agonist [I125]-[Leu31,Pro34]PYY binding in the DG by 20% (p<0,05) and the NPYY1R mRNA expression in the granular layer of DG by 31% (p<0,001). Moreover, PLA-positive red clusters were found specifically in the polymorphic layer and subgranular zone of the DG. No PLA clusters were observed neither in the molecular layer of the DG nor in the corpus callosum, an area that seems to lack of GALR2 receptor. These results demonstrate a novel mechanism of interaction between GAL and NPY1R in the DG at receptor level, probably involving the formation of GALR2/NPYY1R heteroreceptor complexes. Study supported by Junta de Andalucia CVI6476.