652 resultados para AUSTENITIC STAINLESS STEELS
Resumo:
Diplomityön tarkoituksena oli sihtirummun valmistuksen kehittäminen. Työssä tutkittiin ja kehitettiin sihtirummun tukirenkaan ja sauvalangan liittämismenetelmiä. Tavoitteena oli kehittää muita liittämismenetelmiä nykyisen käsnähitsausmenetelmän tilalle. Teoriaosassa perehdyttiin austeniittiseen ruostumattomaan teräkseen, korroosioon, erilaisiin hitsausmenetelmiin ja kovajuottamiseen. Käytännön osassa kerrotaan koekappaleiden suunnittelusta ja valmistuksesta, koekappaleiden koehitsauksista ja kovajuottamisesta sekä tehdyistä veto- ja väsytyskokeista. Lopuksi koetulosten analysoinnin perusteella eri liittämismenetelmät asetetaan paremmuusjärjestykseen.
Resumo:
Due to their numerous novel technological applications ranging from the example of exhaust catalysts in the automotive industry to the catalytic production of hydro- gen, surface reactions on transition metal substrates have become to be one of the most essential subjects within the surface science community. Although numerous applications exist, there are many details in the different processes that, after many decades of research, remain unknown. There are perhaps as many applications for the corrosion resistant materials such as stainless steels. A thorough knowledge of the details of the simplest reactions occuring on the surfaces, such as oxidation, play a key role in the design of better catalysts, or corrosion resistant materials in the future. This thesis examines the oxidation of metal surfaces from a computational point of view mostly concentrating on copper as a model material. Oxidation is studied from the initial oxidation to the oxygen precovered surface. Important parameters for the initial sticking and dissociation are obtained. The saturation layer is thoroughly studied and the calculated results arecompared with available experimental results. On the saturated surface, some open questions still remain. The present calculations demonstrate, that the saturated part of the surface is excluded from being chemically reactive towards the oxygen molecules. The results suggest, that the reason for the chemical activity of the saturated surface is due to a strain effect occuring between the saturated areas of the surface.
Resumo:
Työ jakaantuu kirjalliseen tutkimukseen sekä kokeelliseen osaan. Työn kirjallisuustutkimus käsittelee laserleikkausta yleisesti ja kartoittaa tämän hetken tilannetta kuitulaserin mahdollisuuksista ruostumattomien terästen leikkauksessa. Työn kokeellinen osuus käsittelee ruostumattomien terästen kuitulaserleikkauksesta levypaksuuksilla 3 mm ja 6 mm. Kokeissa tutkitaan leikkauspään leikkaussuunnan mukaisen kulman muutoksen vaikutusta leikkausnopeuteen. Leikkauksissa määritetään neljälle eri leikkauspään kulmalle suurin mahdollinen leikkausnopeus.
Resumo:
UNS S31254 SS electrodes have been built to substitute platinum in conductimetric titrations. The electrodes were tested in both acid-basic titration (chloridric acid and sodium hydroxide) and precipitation titration (sodium chloride and argentum nitrate as titrant). The practical application was exemplified from conductimetric tritations of HF ¾ HNO3 mixtures used in metalurgical industry to passivate stainless steels. The results were compared with those obtained using commercial platinum electrodes. The equivalent volumes obtained were comparable within 3% experimental error. Its application depends on the nature of electrolyte. These results have shown that stainless steel, less expensive than platinum (about three order of magnitude), can substitute platinum electrodes in routine analyses and didactic laboratories.
The effects of real time control of welding parameters on weld quality in plasma arc keyhole welding
Resumo:
Joints intended for welding frequently show variations in geometry and position, for which it is unfortunately not possible to apply a single set of operating parameters to ensure constant quality. The cause of this difficulty lies in a number of factors, including inaccurate joint preparation and joint fit up, tack welds, as well as thermal distortion of the workpiece. In plasma arc keyhole welding of butt joints, deviations in the gap width may cause weld defects such as an incomplete weld bead, excessive penetration and burn through. Manual adjustment of welding parameters to compensate for variations in the gap width is very difficult, and unsatisfactory weld quality is often obtained. In this study a control system for plasma arc keyhole welding has been developed and used to study the effects of the real time control of welding parameters on gap tolerance during welding of austenitic stainless steel AISI 304L. The welding tests demonstrated the beneficial effect of real time control on weld quality. Compared with welding using constant parameters, the maximum tolerable gap width with an acceptable weld quality was 47% higher when using the real time controlled parameters for a plate thickness of 5 mm. In addition, burn through occurred with significantly larger gap widths when parameters were controlled in real time. Increased gap tolerance enables joints to be prepared and fit up less accurately, saving time and preparation costs for welding. In addition to the control system, a novel technique for back face monitoring is described in this study. The test results showed that the technique could be successfully applied for penetration monitoring when welding non magnetic materials. The results also imply that it is possible to measure the dimensions of the plasma efflux or weld root, and use this information in a feedback control system and, thus, maintain the required weld quality.
Resumo:
Aim of this thesis was to design and manufacture a microdistillation column. The literature review part of this thesis covers stainless steels, material processing and basics about engineering design and distillation. The main focus, however, is on the experimental part. Experimental part is divided into five distinct sections: First part is where the device is introduced and separated into three parts. Secondly the device is designed part by part. It consists mostly of detail problem solving, since the first drawings had already been drawn and the critical dimensions decided. Third part is the manufacture, which was not fully completed since the final assembly was left out of this thesis. Fourth part is the test welding for the device, and its analysis. Finally some ideas for further studies are presented. The main goal of this thesis was accomplished. The device only lacks some final assembly but otherwise it is complete. One thing that became clear during the process was how difficult it is to produce small and precise steel parts with conventional manufacturing methods. Internal stresses within steel plates and thermal distortions can easily ruin small steel structures. Designing appropriate welding jigs is an important task for even simple devices. Laser material processing is a promising tool for this kind of steel processing because of the flexibility, good cutting quality and also precise and low heat input when welding. Next step in this project is the final assembly and the actual distillation tests. The tests will be carried out at Helsinki University of Technology.
Resumo:
One hundred fifteen cachaça samples derived from distillation in copper stills (73) or in stainless steels (42) were analyzed for thirty five itens by chromatography and inductively coupled plasma optical emission spectrometry. The analytical data were treated through Factor Analysis (FA), Partial Least Square Discriminant Analysis (PLS-DA) and Quadratic Discriminant Analysis (QDA). The FA explained 66.0% of the database variance. PLS-DA showed that it is possible to distinguish between the two groups of cachaças with 52.8% of the database variance. QDA was used to build up a classification model using acetaldehyde, ethyl carbamate, isobutyl alcohol, benzaldehyde, acetic acid and formaldehyde as chemical descriptors. The model presented 91.7% of accuracy on predicting the apparatus in which unknown samples were distilled.
Resumo:
Många förbränningsanläggningar som bränner utmanande bränslen såsom restfraktioner och avfall råkar ut för problem med ökad korrosion på överhettare och/eller vattenväggar pga. komponenter i bränslena som är korrosiva. För att minimera problemen i avfallseldade pannor hålls ångparametrarna på en relativt låg nivå, vilket drastiskt minskar energiproduktionen. Beläggningarna i avfallseldade pannor består till största delen av element som är förknippade med högtemperaturkorrosion: Cl, S, alkalimetaller, främst K och Na, och tungmetaller som Pb och Zn, och det finns också indikationer av Br-förekomst. Det låga ångtrycket i avfallseldade pannor påverkar också stålrörens temperatur i pannväggarna i eldstaden. I dagens läge hålls temperaturen normalt vid 300-400 °C. Alkalikloridorsakad (KCl, NaCl) högtemperaturkorrosion har inte rapporterats vara relevant vid såpass låga temperaturer, men närvaro av Zn- och Pb-komponenter i beläggningarna har påvisats förorsaka ökad korrosion redan vid 300-400 °C. Vid förbränning kan Zn och Pb reagera med S och Cl och bilda klorider och sulfater i rökgaserna. Dessa tungmetallföreningar är speciellt problematiska pga. de bildar lågsmältande saltblandningar. Dessa lågsmältande gasformiga eller fasta föreningar följer rökgasen och kan sedan fastna eller kondensera på kallare ytor på pannväggar eller överhettare för att sedan bilda aggressiva beläggningar. Tungmetallrika (Pb, Zn) klorider och sulfater ökar risken för korrosion, och effekten förstärks ytterligare vid närvaro av smälta. Motivet med den här studien var att få en bättre insikt i högtemperaturkorrosion förorsakad av Zn och Pb, samt att undersöka och prediktera beteendet och motståndskraften hos några stålkvaliteter som används i överhettare och pannväggar i tungmetallrika förhållanden och höga materialtemperaturer. Omfattande laboratorie-, småskale- och fullskaletest utfördes. Resultaten kan direkt utnyttjas i praktiska applikationer, t.ex. vid materialval, eller vid utveckling av korrosionsmotverkande verktyg för att hitta initierande faktorer och förstå deras effekt på högtemperaturkorrosion.
Resumo:
With an increasingly growing demand for natural resources, the Arctic region has become an attractive area, holding about 15% of world oil. Ice shrinkage caused by global warming encourages the development of offshore and ship-building sectors. Russia, as one of the leading oil and gas production countries is participating actively in cold resistant materials research, since half of its territory belongs to the Arctic environment, which held considerable stores of oil. Nowadays most Russian offshore platforms are located in the Sakhalin Island area, which geographically does not belong to the Arctic, but has com-parable environmental conditions. Russia recently has manufactured several offshore platforms. It became clear that further development of the Arctic off-shore structures with necessary reliability is highly depending on the materials employed. This work pursues the following objectives: to provide a comprehensive review on Russian metals used for Arctic offshore structures on the base of standards, books, journal articles and companies reports to overview various Arctic offshore structures and its structural characteristics briefly discuss materials testing methods for low temperatures Master`s thesis focuses on specifications and description of Russian metals which are already in use and can be used for Arctic offshore structures. Work overviews several groups of steel, such as low carbon, low alloy, chromium containing steels, stainless steels, aluminium and nanostructured steels. Materials under discussion are grouped based on the standards, for instance the work covers shipbuilding and structural steels at the different sections. This paper provides an overview of important Russian Arctic offshore projects built for use in Russia and ordered by foreign countries. Future trends in development of the Arctic materials are discussed. Based on the information provided in this Master`s thesis it is possible to learn about Russian metals used for ships and offshore platforms operated in the Arctic region. Paper can be used as the comprehensive review of current materials, such as various steels, aluminium and nanomaterials.
Resumo:
Viime vuosien aikana tapahtunut nikkelin hinnan nouseminen on vaikuttanut austeniittis-ferriittisten ruostumattomien terästen, ns. duplex -terästen kehittämiseen. Niukkaseosteisemmissa lean duplex -teräksissä seostetun nikkelin määrää on vähennetty ja sitä on korvattu typellä ja mangaanilla. Nämä muutokset ko. terästen seostuksessa aiheuttavat haasteita hitsaukselle, erityisesti austeniitti-ferriitti -suhteen säilyttämisessä, sekä sitä kautta iskusitkeyden ja korroosio-ominaisuuksien säilyttämiselle. Suurempi typen osuus myös lisää teräksen hitsisulan viskositeettia, mikä heikentää juuripalkojen hitsauksessa tunkeumaa. Tässsä diplomityössä on tutkittu keinoja helpottaa paksujen (yli 20 mm) lean duplex -teräslevyjen hitsausta käytännön näkökulmasta, sekä parantaa hitsattujen levyjen iskusitkeyttä. Hitsauskokeilla löydettiin hitsausta helpottavia menetelmiä ja kokeista saatiin karsimalla valikoitua hitsausarvot, joilla pystytään hitsaamaan painelaitedirektiivin mukaisesti hyväksyttäviä hitsejä lean duplex -laatuihin LDX2101 ja UR2202.
Resumo:
The report examines the factors which may be a contributing cause to the problems that are present when ferritic stainless steel are eddy current tested in a warm condition. The work is carried out at Fagersta Stainless AB in Fagersta which manufactures stainless steel wire. In the rolling mill there is an eddy current equipment for detection of surface defects on the wire. The ferritic stainless steels cause a noise when testing and this noise complicates the detection of defects.Because of this, a study was made of how the noise related to factors such as steel grade, temperature, size and velocity. By observing the signal and with the possibilities to change the equipment settings the capability to let a signal filter reduce the noise level were evaluated. Theories about the material's physical properties have also been included, mainly the magnetic properties, electrical conductivity and the material's tendency to oxidize.Results from the tests show that a number of factors do not affect the inductive test significantly and to use a filter to reduce the noise level does not seem to be a viable option. The level of noise does not relate to the presence of superficial particles in form of oxides.The ferritic stainless steels showed some difference in noise level. Which noise level there was did match well with the steels probability for a precipitation of a second phase, and precipitation of austenite may in this case contribute to noise when using an eddy current instrument.The noise is probably due to some physical material property that varies within the thread.
Resumo:
Very often defects are present in rolled products. For wire rods, defects are very deleterious since the wire rods are generally used directly in various applications. For this reason, the market nowadays requires wire rods to be completely defect-free. Any wire with defects must be rejected as scrap which is very costly for the production mill. Thus, it is very important to study the formation and evolution of defects during wire rod rolling in order to better understand and minimize the problem, at the same time improving quality of the wire rods and reducing production costs. The present work is focused on the evolution of artificial defects during rolling. Longitudinal surface defects are studied during shape rolling of an AISI M2 high speed steel and a longitudinal central inner defect is studied in an AISI 304L austenitic stainless steel during ultra-high-speed wire rod rolling. Experimental studies are carried out by rolling short rods prepared with arteficial defects. The evolution of the defects is characterised and compared to numerical analyses. The comparison shows that surface defects generally reduce quicker in the experiments than predicted by the simulations whereas a good agreement is generally obtained for the central defect.
Resumo:
Estudou-se o comportamento do aço inoxidável ABNT 304 à corrosão-sob-tensão (C.S.T.) em soluções aquosas com 0,1%, 3,5% e 20% de NaCl, na temperatura de 103°C, através de ensaios de carga constante. Com auxílio das técnicas e conceitos de Mecânica de Fratura Linear Elástica e das análises eletroquímicas procurou-se encontrar as condições em que ocorre C.S.T. no sistema aço inoxidável austenítico/solução aquosa de NaCl a 103°C. Utilizou-se o corpo-de-prova do tipo dupla viga em balanço (T-notch double cantilever beam: TN-DCB), com intuito de observar a influência do fator de intensidade de tensão, concentração da solução e potencial eletroquímico. Estimou-se o valor do fator de intensidade de tensão limite (KICST) e a velocidade de propagação das trincas; também foram analisadas outras importantes características em termos mecanísticos. Definiu-se faixas de potenciais e valores de intensidade de tensão a partir dos quais ocorre o surgimento de trincas por C.S.T.. Fêz-se análises metalográficas dos corpos-de-prova onde se pode constatar trincas transgranulares bem típicas do fenômeno de C.S.T.. Foram feitos alguns testes em solução aquosa saturada de MgCl2, em ebulição, para se comparar as diferentes soluções quanto ao fenômeno de C.S.T.. Alterou-se as dimensões do corpo-de-prova para avaliar a orientação da propagação das trincas por C.S.T..
Resumo:
Metal powder sintering appears to be promising option to achieve new physical and mechanical properties combining raw material with new processing improvements. It interest over many years and continue to gain wide industrial application. Stainless steel is a widely accepted material because high corrosion resistance. However stainless steels have poor sinterability and poor wear resistance due to their low hardness. Metal matrix composite (MMC) combining soft metallic matrix reinforced with carbides or oxides has attracted considerable attention for researchers to improve density and hardness in the bulk material. This thesis focuses on processing 316L stainless steel by addition of 3% wt niobium carbide to control grain growth and improve densification and hardness. The starting powder were water atomized stainless steel manufactured for Höganäs (D 50 = 95.0 μm) and NbC produced in the UFRN and supplied by Aesar Alpha Johnson Matthey Company with medium crystallite size 16.39 nm and 80.35 nm respectively. Samples with addition up to 3% of each NbC were mixed and mechanically milled by 3 routes. The route1 (R1) milled in planetary by 2 hours. The routes 2 (R2) and 3 (R3) milled in a conventional mill by 24 and 48 hours. Each milled samples and pure sample were cold compacted uniaxially in a cylindrical steel die (Ø 5 .0 mm) at 700 MPa, carried out in a vacuum furnace, heated at 1290°C, heating rate 20°C stand by 30 and 60 minutes. The samples containing NbC present higher densities and hardness than those without reinforcement. The results show that nanosized NbC particles precipitate on grain boundary. Thus, promote densification eliminating pores, control grain growth and increase the hardness values