992 resultados para ATMOSPHERE CHEMISTRY
Resumo:
Increased carbon dioxide (CO2) concentration in the atmosphere will change the balance of the components of carbonate chemistry and reduce the pH at the ocean surface. Here, we report the effects of increased CO2 concentration on the early development of the sea urchins Hemicentrotus pulcherrimus and Echinometra mathaei. We examined the fertilization, early cleavage, and pluteus larval stage to evaluate the impact of elevated CO2 concentration on fertilization rate, cleavage rate, developmental speed, and pluteus larval morphology. Furthermore, we compared the effects of CO2 and HCl at the same pH in an attempt to elucidate any differences between the two. We found that fertilization rate, cleavage rate, developmental speed, and pluteus larval size all tended to decrease with increasing CO2 concentration. Furthermore, CO2-seawater had a more severe effect than HCl-seawater on the fertilization rate. By contrast, the effects on cleavage rate, developmental speed, and pluteus larval morphology were similar for CO2- and HCl-seawater. Our results suggest that both decreased pH and altered carbonate chemistry affect the early development and life history of marine animals, implying that increased seawater CO2 concentration will seriously alter marine ecosystems. The effects of CO2 itself on marine organisms therefore requires further clarification.
Resumo:
We present a primary transit observation for the ultra-hot (T eq ~ 2400 K) gas giant expolanet WASP-121b, made using the Hubble Space Telescope Wide Field Camera 3 in spectroscopic mode across the 1.12–1.64 μm wavelength range. The 1.4 μm water absorption band is detected at high confidence (5.4σ) in the planetary atmosphere. We also reanalyze ground-based photometric light curves taken in the B, r', and z' filters. Significantly deeper transits are measured in these optical bandpasses relative to the near-infrared wavelengths. We conclude that scattering by high-altitude haze alone is unlikely to account for this difference and instead interpret it as evidence for titanium oxide and vanadium oxide absorption. Enhanced opacity is also inferred across the 1.12–1.3 μm wavelength range, possibly due to iron hydride absorption. If confirmed, WASP-121b will be the first exoplanet with titanium oxide, vanadium oxide, and iron hydride detected in transmission. The latter are important species in M/L dwarfs and their presence is likely to have a significant effect on the overall physics and chemistry of the atmosphere, including the production of a strong thermal inversion.
Resumo:
Compared to the use of traditional fossil fuels (coal, oil, natural gas), combustion of biomass and waste fuels has several environmental and economic advantages for heat and power generation. However, biomass and waste fuels might contain halogens (Cl, Br, F), alkali metals (Na, K) and heavy metals (Zn, Pb), which may cause harmful emissions and corrosion problems. Hightemperature corrosion occurs typically on furnace waterwalls and superheaters. The corrosion of the boiler tube materials limits the increase of thermal efficiency of steam boilers and leads to costly shutdowns and repairs. In recent years, some concerns have been raised about halogen (Cl, Br, and F)-related hightemperature corrosion in biomass- and waste-fired boilers. Chlorine-related high-temperature corrosion has been studied extensively. The presence of alkali chlorides in the deposits is believed to play a major role in the corrosion observed in biomass and waste fired boilers. However, there is much less information found in literature on the corrosion effect of bromine and fluorine. According to the literature, bromine is only assumed to play a role similar to chlorine; the role of fluorine is even less understood. In this work, a series of bubbling fluidized bed (BFB) bench-scale tests were carried out to characterize the formation and sulfation behaviors of KCl and KBr in BFB combustion conditions. Furthermore, a series of laboratory tests were carried out to investigate the hightemperature corrosion behaviors of three different superheater steels (10CrMo9-10, AISI 347 and Sanicro 28) exposed to potassium halides in ambient air and wet air (containing 30% H2O). The influence of H2O and O2 on the high-temperature corrosion of steels both with and without a salt (KCl) in three gas atmospheres (2% H2O-30% O2-N2, 2% H2O-2% O2-N2 and 30% H2O-2% O2-N2) was also studied. From the bench-scale BFB combustion tests, it was found that HBr has a clearly higher affinity for the available K forming KBr than HCl forming KCl. The tests also indicated that KCl has a higher tendency for sulfation than KBr. From the laboratory corrosion tests in ambient air (also called “dry air” in Paper III and Paper IV), it was found that at relatively low temperatures (≤ 550 °C) the corrosivity of KBr and KF are similar to KCl. At 600 °C, KF showed much stronger corrosivity than KBr and KCl, especially for 10CrMo9-10 and AISI 347. When exposed to KBr or KF, 10CrMo9-10 was durable at least up to 450 °C, while AISI 347 and Sanicro 28 were durable at least up to 550 °C. From the laboratory corrosion tests in wet air (30% H2O), no obvious effect of water vapor was detected at 450 °C. At 550 °C, the influence of water vapor became significant in some cases, but the trend was not consistent. At 550 °C, after exposure with KBr, 10CrMo9-10 suffered from extreme corrosion; after exposure with KF and KCl, the corrosion was less severe, but still high. At 550 °C, local deep pitting corrosion occurred on AISI 347 and Sanicro 28 after exposure with KF. Some formation of K2CrO4 was observed in the oxide layer. At 550 °C, AISI 347 and Sanicro 28 suffered from low corrosion (oxide layer thickness of < 10 μm) after exposure with KBr and KCl. No formation of K2CrO4 was observed. Internal oxidation occurred in the cases of AISI 347 with KBr and KCl. From the laboratory corrosion tests in three different gas atmospheres (2% H2O-30% O2-N2, 2% H2O-2% O2-N2 and 30% H2O-2% O2-N2), it was found that in tests with no salt, no corrosion occurred on AISI 347 and Sanicro 28 up to 600 °C in both the “O2-rich” (2% H2O-30% O2-N2) and “H2O-rich” (30% H2O-2% O2-N2) gas atmospheres; only 10CrMo9-10 showed increased corrosion with increasing temperature. For 10CrMo9-10 in the “O2-rich” atmosphere, the presence of KCl significantly increased the corrosion compared to the “no salt” cases. For 10CrMo9-10 in the “H2O-rich” atmosphere, the presence or absence of KCl did not show any big influence on corrosion. The formation of K2CrO4 was observed only in the case with the “O2-rich” atmosphere. Considering both the results from the BFB tests and the laboratory corrosion tests, if fuels containing Br were to be combusted, the corrosion damage of superheaters would be expected to be higher than if the fuels contain only Cl. Information generated from these studies can be used to help the boiler manufacturers in selecting materials for the most demanding combustion systems.
Resumo:
This thesis is actually the composition of two separate studies aimed at further understanding the role of incomplete combustion products on atmospheric chemistry. The first explores the sensitivity of black carbon (BC) forcing to aerosol vertical location since BC has an increased forcing per unit mass when it is located above reflective clouds. We used a column radiative transfer model to produce globally-averaged values of normalized direct radiative forcing (NDRF) for BC over and under different types of clouds. We developed a simple column-weighting scheme based on the mass fractions of BC that are over and under clouds in measured vertical profiles. The resulting NDRF is in good agreement with global 3-D model estimates, supporting the column-weighted model as a tool for exploring uncertainties due to diversity in vertical distribution. BC above low clouds accounts for about 20% of the global burden but 50% of the forcing. We estimate maximum-minimum spread in NDRF due to modeled profiles as about 40% and uncertainty as about 25%. Models overestimate BC in the upper troposphere compared with measurements; modeled NDRF might need to be reduced by about 15%. Redistributing BC within the lowest 4 km of the atmosphere affects modeled NDRF by only about 5% and cannot account for very high forcing estimates. The second study estimated global year 2000 carbon monoxide (CO) emissions using a traditional bottom-up inventory. We applied literature-derived emission factors to a variety of fuel and technology combinations. Combining these with regional fuel use and production data we produced CO emissions estimates that were separable by sector, fuel type, technology, and region. We estimated year 2000 stationary source emissions of 685.9 Tg/yr and 885 Tg/yr if we included adopted mobile sources from EDGAR v3.2FT2000. Open/biomass burning contributed most significantly to global CO burden, while the residential sector, primarily in Asia and Africa, were the largest contributors with respect to contained combustion sources. Industry production in Asia, including brick, cement, iron and steel-making, also contributed significantly to CO emissions. Our estimates of biofuel emissions are lower than most previously published bottom-up estimates while our other fuel emissions are generally in good agreement. Our values are also universally lower than recently estimated CO emissions from models using top-down methods.
Resumo:
The thermal behaviour of halloysite fully expanded with hydrazine-hydrate has been investigated in nitrogen atmosphere under dynamic heating and at a constant, pre-set decomposition rate of 0.15 mg min-1. Under controlled-rate thermal analysis (CRTA) conditions it was possible to resolve the closely overlapping decomposition stages and to distinguish between adsorbed and bonded reagent. Three types of bonded reagent could be identified. The loosely bonded reagent amounting to 0.20 mol hydrazine-hydrate per mol inner surface hydroxyl is connected to the internal and external surfaces of the expanded mineral and is present as a space filler between the sheets of the delaminated mineral. The strongly bonded (intercalated) hydrazine-hydrate is connected to the kaolinite inner surface OH groups by the formation of hydrogen bonds. Based on the thermoanalytical results two different types of bonded reagent could be distinguished in the complex. Type 1 reagent (approx. 0.06 mol hydrazine-hydrate/mol inner surface OH) is liberated between 77 and 103°C. Type 2 reagent is lost between 103 and 227°C, corresponding to a quantity of 0.36 mol hydrazine/mol inner surface OH. When heating the complex to 77°C under CRTA conditions a new reflection appears in the XRD pattern with a d-value of 9.6 Å, in addition to the 10.2 Ĺ reflection. This new reflection disappears in contact with moist air and the complex re-expands to the original d-value of 10.2 Å in a few h. The appearance of the 9.6 Å reflection is interpreted as the expansion of kaolinite with hydrazine alone, while the 10.2 Å one is due to expansion with hydrazine-hydrate. FTIR (DRIFT) spectroscopic results showed that the treated mineral after intercalation/deintercalation and heat treatment to 300°C is slightly more ordered than the original (untreated) clay.
Resumo:
Partially aligned and oriented polyacrylonitrile(PAN)-based nanofibers were electrospun from PAN and SWNTs/PAN in the solution of dimethylformamide(DMF) to make the carbon nanofibers. The as-spun nanofibers were hot-stretched in an oven to enhance its orientation and crystallinity. Then it were stabilized at 250 square under a stretched stress, and carbonized at 1000 square in N-2 atmosphere by fixing the length of the stabilized nanofiber to convert them into carbon nanofibers. With this hot-stretched process and with the introduction of SWNTs, the mechanical properties will be enhanced correspondingly. The crystallinity of the stretched fibers confirmed by X-ray diffraction has also increased. For PAN nanofibers, the improved fiber alignment and crystallinity resulted in the increased mechanical properties, such as the modulus and tensile strength of the nanofibers. It was concluded that the hot-stretched nanofiber and the SWNTs/PAN nanofibers can be used as a potential precursor to produce high-performance carbon composites.
Resumo:
The measurement of submicrometre (< 1.0 m) and ultrafine particles (diameter < 0.1 m) number concentration have attracted attention since the last decade because the potential health impacts associated with exposure to these particles can be more significant than those due to exposure to larger particles. At present, ultrafine particles are not regularly monitored and they are yet to be incorporated into air quality monitoring programs. As a result, very few studies have analysed their long-term and spatial variations in ultrafine particle concentration, and none have been in Australia. To address this gap in scientific knowledge, the aim of this research was to investigate the long-term trends and seasonal variations in particle number concentrations in Brisbane, Australia. Data collected over a five-year period were analysed using weighted regression models. Monthly mean concentrations in the morning (6:00-10:00) and the afternoon (16:00-19:00) were plotted against time in months, using the monthly variance as the weights. During the five-year period, submicrometre and ultrafine particle concentrations increased in the morning by 105.7% and 81.5% respectively whereas in the afternoon there was no significant trend. The morning concentrations were associated with fresh traffic emissions and the afternoon concentrations with the background. The statistical tests applied to the seasonal models, on the other hand, indicated that there was no seasonal component. The spatial variation in size distribution in a large urban area was investigated using particle number size distribution data collected at nine different locations during different campaigns. The size distributions were represented by the modal structures and cumulative size distributions. Particle number peaked at around 30 nm, except at an isolated site dominated by diesel trucks, where the particle number peaked at around 60 nm. It was found that ultrafine particles contributed to 82%-90% of the total particle number. At the sites dominated by petrol vehicles, nanoparticles (< 50 nm) contributed 60%-70% of the total particle number, and at the site dominated by diesel trucks they contributed 50%. Although the sampling campaigns took place during different seasons and were of varying duration these variations did not have an effect on the particle size distributions. The results suggested that the distributions were rather affected by differences in traffic composition and distance to the road. To investigate the occurrence of nucleation events, that is, secondary particle formation from gaseous precursors, particle size distribution data collected over a 13 month period during 5 different campaigns were analysed. The study area was a complex urban environment influenced by anthropogenic and natural sources. The study introduced a new application of time series differencing for the identification of nucleation events. To evaluate the conditions favourable to nucleation, the meteorological conditions and gaseous concentrations prior to and during nucleation events were recorded. Gaseous concentrations did not exhibit a clear pattern of change in concentration. It was also found that nucleation was associated with sea breeze and long-range transport. The implications of this finding are that whilst vehicles are the most important source of ultrafine particles, sea breeze and aged gaseous emissions play a more important role in secondary particle formation in the study area.
Resumo:
Nationally and internationally, context-based programs have been implemented in an attempt to engage students in chemistry through connecting the canonical science with the real-world. In Queensland, a context-based approach to chemistry was trialled in selected schools from 2002 but there is little research that investigates how students learn in a context-based setting. This paper presents one significant finding from an ethnographic study that explored the learning that occurred in an 11th grade context-based chemistry classroom in Queensland. The study found that by providing students with the opportunity to write, fluid transitions (or to-ing and fro-ing) between concepts and context were an outcome of context-based learning.
Resumo:
A systematic study of four parameters within the alkaline hydrothermal treatment of three commercial titania powders—anatase, rutile, and Degussa P25—was made. These powders were treated with 5, 7.5, 9, and 10 M NaOH between 100 and 220 °C for 20 h. The effects of alkaline concentration, hydrothermal temperature, and precursor phase and crystallite size on the resultant nanostructure formation have been studied through X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and nitrogen adsorption. Through the correlation of these data, morphological phase diagrams were constructed for each commercial powder. Interpretation of the resultant morphological phase diagrams indicates that alkaline concentration and hydrothermal temperature affect nanostructure formation independently, where nanoribbon formation is significantly influenced by temperature for initial formation. The phase and crystallite size of the precursor also significantly influenced nanostructure formation, with rutile displaying a slower rate of precursor consumption compared with anatase. Small crystallite titania precursors formed nanostructures at reduced hydrothermal temperatures.
Resumo:
Many current chemistry programs privilege de-contextualised conceptual learning, often limited by a narrow selection of pedagogies that too often ignore the realities of studentse own lives and interests (e.g., Tytler, 2007). One new approach that offers hope for improving studentse engagement in learning chemistry and perceived relevance of chemistry is the context-based approach. This study investigated how teaching and learning occurred in one year 11 context-based chemistry classroom. Through an interpretive methodology using a case study design, the teaching and learning that occurred during one term (ten weeks) of a unit on Water Quality are described. The researcher was a participant observer in the study who co-designed the unit of work with the teacher. The research questions explored the structure and implementation of the context-based approach, the circumstances by which students connected concepts and context in the context-based classroom and the outcome of the approach for the students and the teacher. A dialectical sociocultural theoretical framework using the dialectics of structure | agency and agency | passivity was used as a lens to explore the interactions between learners in different fields, such as the field of the classroom and the field of the local community. The findings of this study highlight the difficulties teachers face when implementing a new pedagogical approach. Time constraints and opportunities for students to demonstrate a level of conceptual understanding that satisfied the teacher, hindered a full implementation of the approach. The study found that for high (above average) and sound (average) achieving students, connections between sanctioned science content of school curriculum and the studentse out-of-school worlds were realised when students actively engaged in fields that contextualised inquiry and gave them purpose for learning. Fluid transitions or the toing and froing between concepts and contexts occurred when structures in the classroom afforded students the agency to connect concepts and contexts. The implications for teaching by a context-based approach suggest that keeping the context central, by teaching content on a "need-to-know" basis, contextualises the chemistry for students. Also, if teachers provide opportunities for student-student interactions and written work student learning can improve.
Resumo:
The radiation chemistry and the grafting of a fluoropolymer, poly(tetrafluoroethylene-coperfluoropropyl vinyl ether) (PFA), was investigated with the aim of developing a highly stable grafted support for use in solid phase organic chemistry (SPOC). A radiation-induced grafting method was used whereby the PFA was exposed to ionizing radiation to form free radicals capable of initiating graft copolymerization of styrene. To fully investigate this process, both the radiation chemistry of PFA and the grafting of styrene to PFA were examined. Radiation alone was found to have a detrimental effect on PFA when irradiated at 303 K. This was evident from the loss in the mechanical properties due to chain scission reactions. This meant that when radiation was used for the grafting reactions, the total radiation dose needed to be kept as low as possible. The radicals produced when PFA was exposed to radiation were examined using electron spin resonance spectroscopy. Both main-chain (–CF2–C.F–CF2-) and end-chain (–CF2–C.F2) radicals were identified. The stability of the majority of the main-chain radicals when the polymer was heated above the glass transition temperature suggested that they were present mainly in the crystalline regions of the polymer, while the end-chain radicals were predominately located in the amorphous regions. The radical yield at 77 K was lower than the radical yield at 303 K suggesting that cage recombination at low temperatures inhibited free radicals from stabilizing. High-speed MAS 19F NMR was used to identify the non-volatile products after irradiation of PFA over a wide temperature range. The major products observed over the irradiation temperature 303 to 633 K included new saturated chain ends, short fluoromethyl side chains in both the amorphous and crystalline regions, and long branch points. The proportion of the radiolytic products shifted from mainly chain scission products at low irradiation temperatures to extensive branching at higher irradiation temperatures. Calculations of G values revealed that net crosslinking only occurred when PFA was irradiated in the melt. Minor products after irradiation at elevated temperatures included internal and terminal double bonds and CF3 groups adjacent to double bonds. The volatile products after irradiation at 303 K included tetrafluoromethane (CF4) and oxygen-containing species from loss of the perfluoropropyl ether side chains of PFA as identified by mass spectrometry and FTIR spectroscopy. The chemical changes induced by radiation exposure were accompanied by changes in the thermal properties of the polymer. Changes in the crystallinity and thermal stability of PFA after irradiation were examined using DSC and TGA techniques. The equilibrium melting temperature of untreated PFA was 599 K as determined using a method of extrapolation of the melting temperatures of imperfectly formed crystals. After low temperature irradiation, radiation- induced crystallization was prevalent due to scission of strained tie molecules, loss of perfluoropropyl ether side chains, and lowering of the molecular weight which promoted chain alignment and hence higher crystallinity. After irradiation at high temperatures, the presence of short and long branches hindered crystallization, lowering the overall crystallinity. The thermal stability of the PFA decreased with increasing radiation dose and temperature due to the introduction of defect groups. Styrene was graft copolymerized to PFA using -radiation as the initiation source with the aim of preparing a graft copolymer suitable as a support for SPOC. Various grafting conditions were studied, such as the total dose, dose rate, solvent effects and addition of nitroxides to create “living” graft chains. The effect of dose rate was examined when grafting styrene vapour to PFA using the simultaneous grafting method. The initial rate of grafting was found to be independent of the dose rate which implied that the reaction was diffusion controlled. When the styrene was dissolved in various solvents for the grafting reaction, the graft yield was strongly dependent of the type and concentration of the solvent used. The greatest graft yield was observed when the solvent swelled the grafted layers and the substrate. Microprobe Raman spectroscopy was used to map the penetration of the graft into the substrate. The grafted layer was found to contain both poly(styrene) (PS) and PFA and became thicker with increasing radiation dose and graft yield which showed that grafting began at the surface and progressively penetrated the substrate as the grafted layer was swollen. The molecular weight of the grafted PS was estimated by measuring the molecular weight of the non-covalently bonded homopolymer formed in the grafted layers using SEC. The molecular weight of the occluded homopolymer was an order of magnitude greater than the free homopolymer formed in the surrounding solution suggesting that the high viscosity in the grafted regions led to long PS grafts. When a nitroxide mediated free radical polymerization was used, grafting occurred within the substrate and not on the surface due to diffusion of styrene into the substrate at the high temperatures needed for the reaction to proceed. Loading tests were used to measure the capacity of the PS graft to be functionialized with aminomethyl groups then further derivatized. These loading tests showed that samples grafted in a solution of styrene and methanol had superior loading capacity over samples graft using other solvents due to the shallow penetration and hence better accessibility of the graft when methanol was used as a solvent.
Resumo:
Solid-phase organic chemistry has rapidly expanded in the last decade, and, as a consequence, so has the need for the development of supports that can withstand the extreme conditions required to facilitate some reactions. The authors here prepare a thermally stable, grafted fluoropolymer support (see Figure for an example) in three solvents, and found that the penetration of the graft was greatest in dichloromethane.
Resumo:
This paper reviews some aspects of calcium phosphate chemistry since phosphate in juice is an important parameter in all sugar juice clarification systems. It uses basic concepts to try and explain the observed differences in clarification performance obtained with various liming techniques. The paper also examines the current colorimetric method used for the determination of phosphate in sugar juice. In this method, a phosphomolybdate blue complex formed due to the addition of a dye is measured at 660 nm. Unfortunately, at this wavelength there is interference of the colour arising from within the juice and results in the underestimation of the amount of soluble inorganic phosphate content of juice. It is suggested that phosphate analysis be conducted at the higher wavelength of 875 nm where the interference of the juice colour is minimised.