884 resultados para APOPTOTIC MIMICRY
Resumo:
Outer mitochondrial membrane (OMM) rupture was first noted in isolated mitochondria in which the inner mitochondrial membrane (IMM) had lost its selective permeability. This phenomenon referred to as mitochondrial permeability transition (MPT) refers to a permeabilized inner membrane that originates a large swelling in the mitochondrial matrix, which distends the outer membrane until it ruptures. Here, we have expanded previous electron microscopic observations that in apoptotic cells, OMM rupture is not caused by a membrane stretching promoted by a markedly swollen matrix. It is shown that the widths of the ruptured regions of the OMM vary from 6 to 250 nm. Independent of the perforation size, herniation of the mitochondrial matrix appeared to have resulted in pushing the IMM through the perforation. A large, long focal herniation of the mitochondrial matrix, covered with the IMM, was associated with a rupture of the OMM that was as small as 6 nm. Contextually, the collapse of the selective permeability of the IMM may precede or follow the release of the mitochondrial proteins of the intermembrane space into the cytoplasm. When the MPT is a late event, exit of the intermembrane space proteins to the cytoplasm is unimpeded and occurs through channels that transverse the outer membrane, because so far, the inner membrane is impermeable. No channel within the outer membrane can expose to the cytoplasm a permeable inner membrane, because it would serve as a conduit for local herniation of the mitochondrial matrix. Anat Rec, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated destruction of pancreatic beta cells, resulting in insulin deficiency and hyperglycaemia. Recent studies have described that apoptosis impairment during central and peripheral tolerance is involved in T1D pathogenesis. In this study, the apoptosis-related gene expression in T1D patients was evaluated before and after treatment with high-dose immunosuppression followed by autologous haematopoietic stem cell transplantation (HDI-AHSCT). We also correlated gene expression results with clinical response to HDI-AHSCT. We observed a decreased expression of bad, bax and fasL pro-apoptotic genes and an increased expression of a1, bcl-xL and cIAP-2 anti-apoptotic genes in patients' peripheral blood mononuclear cells (PBMCs) compared to controls. After HDI-AHSCT, we found an up-regulation of fas and fasL and a down-regulation of anti-apoptotic bcl-xL genes expression in post-HDI-AHSCT periods compared to pre-transplantation. Additionally, the levels of bad, bax, bok, fasL, bcl-xL and cIAP-1 genes expression were found similar to controls 2 years after HDI-AHSCT. Furthermore, over-expression of pro-apoptotic noxa at 540 days post-HDI-AHSCT correlated positively with insulin-free patients and conversely with glutamic acid decarboxylase autoantibodies (GAD65) autoantibody levels. Taken together, the results suggest that apoptosis-related genes deregulation in patients' PBMCs might be involved in breakdown of immune tolerance and consequently contribute to T1D pathogenesis. Furthermore, HDI-AHSCT modulated the expression of some apoptotic genes towards the levels similar to controls. Possibly, the expression of these apoptotic molecules could be applied as biomarkers of clinical remission of T1D patients treated with HDI-AHSCT therapy.
Resumo:
We have prepared a DNA-mimicry of nucleosides in which the anti-HIV drug lamivudine (beta-L-2',3'-dideoxy-3'-thiacytidine, 3TC) self-assembles into a base-paired and helically base-stacked hexagonal structure. Face-to-face and face-to-tail stacked 3TC=3TC dimers base-paired through two hydrogen bonds between neutral cytosines by either N-H center dot center dot center dot O or N-H center dot center dot center dot N atoms give rise to a right-handed DNA-mimicry of lamivudine with an unusual highly symmetric hexagonal lattice and topology. In addition, a base-paired and base-stacked supramolecular architecture of lamivudine hemihydrochloride hemihydrate was also obtained as a result of our crystal screenings. This structure is formed through partially face-to-face stacked lamivudine pairs held together by protonated and neutral fragments. However, no helical stacking occurs in this structure in which lamivudine also adopts unusual conformations as the C1'-endo and C1'-exo sugar puckers and cytosine orientations intermediate between the anti and syn conformations. As a conclusion drawn from the nucleoside duplex, the hexagonal DNA-mimicry of lamivudine reveals that such double-stranded helices can be assembled without counterions and organic solvents but with higher crystallographic symmetry instead, because only water crystallizes together with lamivudine in this structure.
Resumo:
There is evidence that the platelet-activating factor receptor (PAFR) is involved in the clearance of apoptotic cells by macrophages, and that this is associated with anti-inflammatory phenotype. Our group has previously shown that coinjection of a large number of apoptotic cells can promote tumor growth from a subtumorigenic dose of melanoma cells. Here, we studied the involvement of the PAFR in the tumor growth promoting effect of apoptotic cells. A sub-tumorigenic dose of melanoma cells (Tm1) was coinjected with apoptotic Tm1 cells, subcutaneously in the flank of C57Bl/6 mice, and the volume was monitored for 30 days. Animals received the PAFR antagonists, WEB2170 or PCA4248 (5 mg/kg body weight) or vehicle, by peritumoral daily injection for 5 days. Results showed that PAFR antagonists significantly inhibited the tumor growth induced by the coinjection of a subtumorigenic dose of melanoma cells together with apoptotic cells. This was accompanied by inhibition of early neutrophil and macrophage infiltration. Addition of (platelet-activating factor) to this system has no significant effect. PAFR antagonists did not affect the promoting effect of carrageenan. We suggest that the recognition of apoptotic cells by phagocytes leads to activation of PAFR pathways, resulting in a microenvironment response favorable to melanoma growth.
Resumo:
Background: In many types of cancer, prostaglandin E-2 (PGE(2)) is associated with tumour related processes including proliferation, migration, angiogenesis and apoptosis. However in gliomas the role of this prostanoid is poorly understood. Here, we report on the proliferative, migratory, and apoptotic effects of PGE(1), PGE(2) and Ibuprofen (IBP) observed in the T98G human glioma cell line in vitro. Methods: T98G human glioma cells were treated with IBP, PGE(1) or PGE(2) at varying concentrations for 24-72 hours. Cell proliferation, mitotic index and apoptotic index were determined for each treatment. Caspase-9 and caspase-3 activity was measured using fluorescent probes in live cells (FITC-LEHD-FMK and FITC-DEVD-FMK respectively). The migratory capacity of the cells was quantified using a scratch migration assay and a transwell migration assay. Results: A significant decrease was seen in cell number (54%) in the presence of 50 mu M IBP. Mitotic index and bromodeoxyuridine (BrdU) incorporation were also decreased 57% and 65%, respectively, by IBP. The apoptotic index was increased (167%) and the in situ activity of caspase-9 and caspase-3 was evident in IBP treated cells. The inhibition of COX activity by IBP also caused a significant inhibition of cell migration in the monolayer scratch assay (74%) and the transwell migration assay (36%). In contrast, the presence of exogenous PGE(1) or PGE(2) caused significant increases in cell number (37% PGE(1) and 45% PGE(2)). When mitotic index was measured no change was found for either PG treatment. However, the BrdU incorporation rate was significantly increased by PGE(1) (62%) and to a greater extent by PGE(2) (100%). The apoptotic index was unchanged by exogenous PGs. The addition of exogenous PGs caused an increase in cell migration in the monolayer scratch assay (43% PGE(1) and 44% PGE(2)) and the transwell migration assay (28% PGE(1) and 68% PGE(2)). Conclusions: The present study demonstrated that treatments which alter PGE(1) and PGE(2) metabolism influence the proliferative and apoptotic indices of T98G glioma cells. The migratory capacity of the cells was also significantly affected by the change in prostaglandin metabolism. Modifying PG metabolism remains an interesting target for future studies in gliomas.
Resumo:
Aerobic exercise training (ET) lowers hypertension and improves patient outcomes in cardiovascular disease. The mechanisms of these effects are largely unknown. We hypothesized that ET modulates microRNAs (miRNAs) involved in vascularization. miRNA-16 regulates the expression of vascular endothelial growth factor and antiapoptotic protein Bcl-2. miRNA-21 targets Bcl-2. miRNA-126 functions by repressing regulators of the vascular endothelial growth factor pathway. We investigated whether miRNA-16, -21 and -126 are modulated in hypertension and by ET. Twelve-week-old male spontaneously hypertensive rats (SHRs; n=14) and Wistar Kyoto (WKY; n=14) rats were assigned to 4 groups: SHRs, trained SHRs (SHR-T), Wistar Kyoto rats, and trained Wistar Kyoto rats. ET consisted of 10 weeks of swimming. ET reduced blood pressure and heart rate in SHR-Ts. ET repaired the slow-to-fast fiber type transition in soleus muscle and the capillary rarefaction in SHR-Ts. Soleus miRNA-16 and -21 levels increased in SHRs paralleled with a decrease of 48% and 25% in vascular endothelial growth factor and Bcl-2 protein levels, respectively. Hypertension increased Bad and decreased Bcl-x and endothelial NO synthase levels and lowered p-Bad(ser112): Bad ratio. ET in SHR-Ts reduced miRNA-16 and -21 levels and elevated vascular endothelial growth factor and Bcl-2 levels. ET restored soleus endothelial NO synthase levels plus proapoptotic and antiapoptotic mediators in SHR-Ts, indicating that the balance between angiogenic and apoptotic factors may prevent microvascular abnormalities in hypertension. miRNA-126 levels were reduced in SHRs with an increase of 51% in phosphoinositol-3 kinase regulatory subunit 2 expression but normalized in SHR-Ts. Our data show that ET promoted peripheral revascularization in hypertension, which could be associated with regulation of select miRNAs, suggesting a mechanism for its potential therapeutic application in vascular diseases. (Hypertension. 2012;59[part 2]:513-520.). Online Data Supplement
Resumo:
Cisplatin is a highly effective chemotherapeutic drug; however, its use is limited by nephrotoxicity. Studies showed that the renal injury produced by cisplatin involves oxidative stress and cell death mediated by apoptosis and necrosis in proximal tubular cells. The use of antioxidants to decrease cisplatin-induced renal cell death was suggested as a potential therapeutic measure. In this study the possible protective effects of carvedilol, a beta blocker with antioxidant activity, was examined against cisplatin-induced apoptosis in HK-2 human kidney proximal tubular cells. The mitochondrial events involved in this protection were also investigated. Four groups were used: controls (C), cisplatin alone at 25 mu M (CIS), cisplatin 25 mu M plus carvedilol 50 mu M (CV + CIS), and carvedilol alone 50 mu M (CV). Cell viability, apoptosis, caspase-9, and caspase-3 were determined. Data demonstrated that carvedilol effectively increased cell viability and minimized caspase activation and apoptosis in HK-2 cells, indicating this may be a promising drug to reduce nephrotoxicity induced by cisplatin.
Resumo:
Cell death by apoptosis is considered to be irreversible. However, reports have indicated that its reversibility is possible if the cells have not yet reached the "point of no return.'' In order to add new information about this topic, we used cells at different moments of apoptotic process as nuclear donors in somatic cell nuclear transfer (SCNT) in order to test if programmed cell death can be reversed. Adult bovine fibroblasts were treated with 10 mu M of staurosporine (STP) for 3 h and analyzed for phosphatidylserine externalization (Annexin assay) and presence of active caspase-9. Annexin-positive (Anx +) and Caspase-9-positive (Casp-9 +) cells were isolated by FACS and immediately transferred into enucleated in vitro matured bovine oocytes. After STP treatment, 89.9% of cells were Anx + (4.6% in control cells; p < 0.01) and 24.9% were Casp-9 + (2.4% in control cells; p < 0.01). Fusion and cleavage were not affected by the use apoptotic cells (p > 0.05). Also, the use of Anx + cells did not affect blastocyst production compared to control (26.4% vs. 22.9%, respectively; p > 0.05). However, blastocyst formation was affected by the use of Casp-9 + cells (12.3%; p < 0.05). These findings contribute to the idea of that apoptosis is reversible only at early stages. Additionally, we hypothesize that the "point of no return'' for apoptosis may be located around activation of Caspase-9.
Resumo:
The toxicity of palmitic acid (PA) towards a human T-lymphocyte cell line (Jurkat) has been previously investigated but the mechanism(s) of PA action were unknown. In the current study, Jurkat cells were treated with sub-lethal concentrations of PA (50-150 mu M) and the activity of various signaling proteins was investigated. PA-induced apoptosis and mitochondrial dysfunction in a dose-dependent manner as evaluated by DNA fragmentation assay and depolarization of the mitochondrial membrane, respectively. PA treatment provoked release of cytochrome c from the inner mitochondrial membrane to the cytosol, activated members of the MAPK protein family JNK, p38, ERK, activated caspases 3/9, and increased oxidative/nitrosative stress. Exposure of cells to PA for 12 h increased insulin receptor (IR) and GLUT-4 levels in the plasma membrane. Insulin treatment (10 mU/ml/30 min) increased the phosphorylation of the IR beta-subunit and Akt. A correlation was found between DNA fragmentation and expression levels of both IR and GLUT-4. Similar results were obtained for PA-treated lymphocytes from healthy human donors and from mesenteric lymph nodes of 48-h starved rats. PA stimulated glucose uptake by Jurkat cells (in the absence of insulin), stimulated accumulation of neutral lipids (triglyceride), and other lipid classes (phospholipids and cholesterol ester) but reduced glucose oxidation. Our results suggest that parameters of insulin signaling and non-oxidative glucose metabolism are stimulated as part of a coordinated response to prompt survival in lymphocytes exposed to PA but at higher concentrations, apoptosis prevails. These findings may explain aspects of lymphocyte dysfunction associated with diabetes. J. Cell. Physiol. 227: 339-350, 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation.
Resumo:
Eighty-six newly diagnosed multiple myeloma (MM) patients from a public hospital of São Paulo (Brazil) were evaluated by cIg-FISH for the presence of del(13)(q14), t(4;14)(p16.3;q32) and del(17)(p13). These abnormalities were observed in 46.5, 9.3, and 7.0% of the patients, respectively. In order to identify the possible role of del(13)(q14) in the physiopathology of MM, we investigated the association between this abnormality and the proliferative and apoptotic indexes of plasma cells. When cases demonstrating t(4;14)(p16.3;q32) and del(17)(p13) were excluded from the analysis, we observed a trend towards a positive correlation between the proportion of cells carrying del(13)(q14) and plasma cell proliferation, determined by Ki-67 expression (r = 0.23, P = 0.06). On the other hand, no correlation between the proportion of cells carrying del(13)(q14) and apoptosis, determined by annexin-V staining, was detected (r = 0.05, P = 0.69). In general, patients carrying del(13)(q14) did not have lower survival than patients without del(13)(q14) (P = 0.15), but patients with more than 80% of cells carrying del(13)(q14) showed a lower overall survival (P = 0.033). These results suggest that, when del(13)(q14) is observed in a high proportion of malignant cells, it may have a role in determining MM prognosis. Another finding was a statistically significant lower overall survival of patients with t(4;14)(p16.3;q32) (P = 0.026). In the present study, almost half the patients with t(4;14)(p16.3;q32) died just after diagnosis, before starting treatment. This fact suggests that, in São Paulo, there may be even more patients with this chromosomal abnormality, but they probably die before being diagnosed due to unfavorable socioeconomic conditions. This could explain the low prevalence of this chromosomal abnormality observed in the present study.
Resumo:
Human endogenous retroviruses (HERVs) arise from ancient infections of the host germline cells by exogenous retroviruses, constituting 8% of the human genome. Elevated level of envelope transcripts from HERVs-W has been detected in CSF, plasma and brain tissues from patients with Multiple Sclerosis (MS), most of them from Xq22.3, 15q21.3, and 6q21 chromosomes. However, since the locus Xq22.3 (ERVWE2) lack the 5' LTR promoter and the putative protein should be truncated due to a stop codon, we investigated the ERVWE2 genomic loci from 84 individuals, including MS patients with active HERV-W expression detected in PBMC. In addition, an automated search for promoter sequences in 20 kb nearby region of ERVWE2 reference sequence was performed. Several putative binding sites for cellular cofactors and enhancers were found, suggesting that transcription may occur via alternative promoters. However, ERVWE2 DNA sequencing of MS and healthy individuals revealed that all of them harbor a stop codon at site 39, undermining the expression of a full-length protein. Finally, since plaque formation in central nervous system (CNS) of MS patients is attributed to immunological mechanisms triggered by autoimmune attack against myelin, we also investigated the level of similarity between envelope protein and myelin oligodendrocyte glycoprotein (MOG). Comparison of the MOG to the envelope identified five retroviral regions similar to the Ig-like domain of MOG. Interestingly, one of them includes T and B cell epitopes, capable to induce T effector functions and circulating Abs in rats. In sum, although no DNA substitutions that would link ERVWE2 to the MS pathogeny was found, the similarity between the envelope protein to MOG extends the idea that ERVEW2 may be involved on the immunopathogenesis of MS, maybe facilitating the MOG recognizing by the immune system. Although awaiting experimental evidences, the data presented here may expand the scope of the endogenous retroviruses involvement on MS pathogenesis
Resumo:
The first part of the research project of the Co-Advisorship Ph.D Thesis was aimed to select the best Bifidobacterium longum strains suitable to set the basis of our study. We were looking for strains with the abilities to colonize the intestinal mucosa and with good adhesion capacities, so that we can test these strains to investigate their ability to induce apoptosis in “damaged” intestinal cells. Adhesion and apoptosis are the two process that we want to study to better understand the role of an adhesion protein that we have previously identified and that have top scores homologies with the recent serpin encoding gene identified in B. longum by Nestlè researchers. Bifidobacterium longum is a probiotic, known for its beneficial effects to the human gut and even for its immunomodulatory and antitumor activities. Recently, many studies have stressed out the intimate relation between probiotic bacteria and the GIT mucosa and their influence on human cellular homeostasis. We focused on the apoptotic deletion of cancer cells induced by B. longum. This has been valued in vitro, performing the incubation of three B.longum strains with enterocyte-like Caco- 2 cells, to evidence DNA fragmentation, a cornerstone of apoptosis. The three strains tested were defined for their adhesion properties using adhesion and autoaggregation assays. These features are considered necessary to select a probiotic strain. The three strains named B12, B18 and B2990 resulted respectively: “strong adherent”, “adherent” and “non adherent”. Then, bacteria were incubated with Caco-2 cells to investigate apoptotic deletion. Cocultures of Caco-2 cells with B. longum resulted positive in DNA fragmentation test, only when adherent strains were used (B12 and B18). These results indicate that the interaction with adherent B. longum can induce apoptotic deletion of Caco-2 cells, suggesting a role in cellular homeostasis of the gastrointestinal tract and in restoring the ecology of damaged colon tissues. These results were used to keep on researching and the strains tested were used as recipient of recombinant techniques aimed to originate new B.longum strains with enhanced capacity of apoptotic induction in “damaged” intestinal cells. To achieve this new goal it was decided to clone the serpin encoding gene of B. longum, so that we can understand its role in adhesion and apoptosis induction. Bifidobacterium longum has immunostimulant activity that in vitro can lead to apoptotic response of Caco-2 cell line. It secretes a hypothetical eukaryotic type serpin protein, which could be involved in this kind of deletion of damaged cells. We had previously characterised a protein that has homologies with the hypothetical serpin of B. longum (DD087853). In order to create Bifidobacterium serpin transformants, a B. longum cosmid library was screened with a PCR protocol using specific primers for serpin gene. After fragment extraction, the insert named S1 was sub-cloned into pRM2, an Escherichia coli - Bifidobacterium shuttle vector, to construct pRM3. Several protocols for B. longum transformation were performed and the best efficiency was obtained using MRS medium and raffinose. Finally bacterial cell supernatants were tested in a dotblot assay to detect antigens presence against anti-antitrypsin polyclonal antibody. The best signal was produced by one starin that has been renamed B. longum BLKS 7. Our research study was aimed to generate transformants able to over express serpin encoding gene, so that we can have the tools for a further study on bacterial apoptotic induction of Caco-2 cell line. After that we have originated new trasformants the next step to do was to test transformants abilities when exposed to an intestinal cell model. In fact, this part of the project was achieved in the Department of Biochemistry of the Medical Faculty of the University of Maribor, guest of the abroad supervisor of the Co-Advisorship Doctoral Thesis: Prof. Avrelija Cencic. In this study we examined the probiotic ability of some bacterial strains using intestinal cells from a 6 years old pig. The use of intestinal mammalian cells is essential to study this symbiosis and a functional cell model mimics a polarised epithelium in which enterocytes are separated by tight junctions. In this list of strains we have included the Bifidobacterium longum BKS7 transformant strain that we have previously originated; in order to compare its abilities. B. longum B12 wild type and B. longum BKS7 transformant and eight Lactobacillus strains of different sources were co-cultured with porcine small intestine epithelial cells (PSI C1) and porcine blood monocytes (PoM2) in Transwell filter inserts. The strains, including Lb. gasseri, Lb. fermentum, Lb. reuterii, Lb. plantarum and unidentified Lactobacillus from kenyan maasai milk and tanzanian coffee, were assayed for activation of cell lines, measuring nitric oxide by Griess reaction, H202 by tetramethylbenzidine reaction and O2 - by cytochrome C reduction. Cytotoxic effect by crystal violet staining and induction on metabolic activity by MTT cell proliferation assay were tested too. Transepithelial electrical resistance (TER) of polarised PSI C1 was measured during 48 hours co-culture. TER, used to observe epithelium permeability, decrease during pathogenesis and tissue becomes permeable to ion passive flow lowering epithelial barrier function. Probiotics can prevent or restore increased permeability. Lastly, dot-blot was achieved against Interleukin-6 of treated cells supernatants. The metabolic activity of PoM2 and PSI C1 increased slightly after co-culture not affecting mitochondrial functions. No strain was cytotoxic over PSI C1 and PoM2 and no cell activation was observed, as measured by the release of NO2, H202 and O2 - by PoM2 and PSI C1. During coculture TER of polarised PSI C1 was two-fold higher comparing with constant TER (~3000 ) of untreated cells. TER raise generated by bacteria maintains a low permeability of the epithelium. During treatment Interleukin-6 was detected in cell supernatants at several time points, confirming immunostimulant activity. All results were obtained using Lactobacillus paracasei Shirota e Carnobacterium divergens as controls. In conclusion we can state that both the list of putative probiotic bacteria and our new transformant strain of B. longum are not harmful when exposed to intestinal cells and could be selected as probiotics, because can strengthen epithelial barrier function and stimulate nonspecific immunity of intestinal cells on a pig cell model. Indeed, we have found out that none of the strains tested that have good adhesion abilities presents citotoxicity to the intestinal cells and that non of the strains tested can induce cell lines to produce high level of ROS, neither NO2. Moreover we have assayed even the capacity of producing certain citokynes that are correlated with immune response. The detection of Interleukin-6 was assayed in all our samples, including B.longum transformant BKS 7 strain, this result indicates that these bacteria can induce a non specific immune response in the intestinal cells. In fact, when we assayed the presence of Interferon-gamma in cells supernatant after bacterial exposure, we have no positive signals, that means that there is no activation of a specific immune response, thus confirming that these bacteria are not recognize as pathogen by the intestinal cells and are certainly not harmful for intestinal cells. The most important result is the measure of Trans Epithelial Electric Resistance that have shown how the intestinal barrier function get strengthen when cells are exposed to bacteria, due to a reduction of the epithelium permeability. We have now a new strain of B. longum that will be used for further studies above the mechanism of apoptotic induction to “damaged cells” and above the process of “restoring ecology”. This strain will be the basis to originate new transformant strains for Serpin encoding gene that must have better performance and shall be used one day even in clinical cases as in “gene therapy” for cancer treatment and prevention.
Resumo:
Candidate vaccines based on the highly attenuated orthopoxvirus strain MVA are tested against various infectious and cancer diseases and, more profound, vaccines based on wildtype and recombinant viruses have been found safe and immunogenic in clinical trials. Compared to conventional vaccine strains, MVA lacks many functional genes for potentially important regulators of virus-host interactions. However, some gene functions responsible for counteraction of cellular antiviral pathways are still conserved in the genome of MVA and the inhibition of apoptosis seems to be one important mechanism, the virus is still able to interact with.rnrnVaccinia viruses encode several proteins which prevent the induction of virus-induced apoptosis. The vaccinia virus anti-apoptotic protein F1 was shown to counteract the activation of the mitochondrial pathway of apoptosis in a highly effective manner. Another vaccinia virus protein, N1, like F1 shows structural and functional similarity to members of the cellular anti-apoptotic bcl-2 family and was also shown to inhibit apoptosis. The vaccinia virus early protein E3 inhibits programmed cell death by binding to and sequestration of dsRNA molecules, normally inducing cellular antiviral pathways also driving the induction of apoptosis. All three anti-apoptotic genes were functionally analyzed during this work.rn