836 resultados para ALUMINIUM COMPOUNDS
Resumo:
Trace organic chemicals include a range of compounds which, due to a combination of their physico-chemical properties and toxicological implications, have been described as a serious threat to the biotic environment. A global treaty to regulate the manufacture and release of some of the most persistent trace chemicals has been promulgated and signed. The marine environment is an important sink for many trace chemicals, some of which accumulate in the marine food chain and in particular in marine mammals. With respect to the global distribution of trace organic chemicals, the levels of organohalogen compounds in the Southern Hemisphere are comparatively lower for a given environmental compartment and latitude compared to the Northern Hemisphere. A debate is currently evolving about the toxicity of alternative halogen substitutions such as bromine instead of chlorine and also of mixed halogen substitution. Recently a series of potentially natural bioaccumulative and persistent organohalogen chemicals have been found in marine mammals and turtles at levels in excess of those of anthropogenic trace organochlorines including PCBs and DDE. Little is known about the sources, behaviour and effects of natural trace organic chemicals. This manuscript presents an overview on the occurrence of trace organic chemicals in different compartments of the aquatic environment. Important knowledge gaps with regards to trace chemicals in the marine environment are presented. Crown Copyright (C) 2002 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Directional solidification of unmodified and strontium modified binary, high-purity aluminium-7 wt% silicon and commercial A356 alloys has been carried out to investigate the mechanism of eutectic solidification. The microstructure of the eutectic growth inter-face was investigated with optical microscopy and Electron Backscattering Diffraction (EBSD). In the commercial alloys, the eutectic solidification inter-face extends in the growth direction and creates a eutectic mushy zone. A planar eutectic growth front is observed in the high-purity alloys. The eutectic aluminium has mainly the same crystallographic orientation as the dendrites in the unmodified alloys and the strontium modified high-purity alloy. A more complex eutectic grain structure is found in the strontium modified commercial alloy. A mechanism involving constitutional undercooling and a columnar to equiaxed transition explains the differences between pure and commercial alloys. It is probably caused by the segregation of iron and magnesium and the activation of nucleants in the commercial alloy. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Adsorption of model aromatic compounds onto two untreated activated carbons with similar physical and chemical properties is investigated. The solution pH of all experiments was lowered so that all solutes were in their molecular forms. It is shown that the difference in the maximum adsorption capacities of the solutes was mainly attributed to the difference in the sizes of the molecules. This new experimental finding is significant to gaining insight into the orientation of the adsorbed phase and hence the adsorption mechanism of aromatic compounds in aqueous solutions. It is shown that the adsorption of aromatic compounds in a stacked motif for pi-pi interactions is unlikely, and in the absence of physical restrictions such as pore width, a T-shaped motif is the preferred orientation.
Resumo:
Adsorption of four dissociating aromatic compounds and one nondissociating compound on a commercial activated carbon is investigated systematically. All adsorption experiments were carried out in pH-controlled aqueous solutions. The adsorption isotherms are fitted to the binary homogeneous Langmuir model, where the concentrations of the molecular and the ionic species in the liquid phase are expressed in terms of the sum of the two and the degree of solute ionization. Examination of the relationships between the solution pH, the degree of ionization of the solutes, and the model parameters is found to give new insights into the adsorption process. Furthermore, this is used to correlate the variation of the monolayer capacity with the solution pH.
Resumo:
The adsorption of three aromatic compounds on to an untreated carbon was investigated. The solution pH was lowered in all experiments so that all the solutes were in their molecular forms. It was shown that the difference in the maximum adsorption of the solutes was mainly a result of the difference in the sizes of the molecules and their functional groups. Further-more, it was illustrated that the packing arrangement was most likely edge-to-face (sorbate-sorbent) with various tilt angles. On the other hand, the affinity and heterogeneity of the adsorption systems were apparently related to the pK(a) values of the solutes.
Resumo:
Organic binders are used in premixes for powder metallurgy applications to prevent dusting and segregation. This is a particular problem for aluminium powder metallurgy because the dust is a potential safety hazard. The binder must also burn out completely at low temperatures in an inert environment and not react with the metal powders. It is demonstrated that cellulose acetate, polyvinyl acetate and polyvinyl alcohol are effective dedusting agents but they react with the metal powders during sintering and decrease the sintered density. Paraffin wan is an effect dedusting agent that provided die wall lubricity, does not interfere with sintering and increases tensile strength and ductility.
Resumo:
Based on the hypothesis that limited receptor solubility of lipophilic compounds may result in lower observed permeability parameters, the aim of this study was to determine the in vitro human epidermal permeability coefficients and membrane retention of a series of aliphatic alcohols (C1-C10, log p -0.72 to 4.06) using two different receptor solutions (water and 4% bovine serum albumin in phosphate-buffered saline). Aqueous solutions of radiolabeled alcohols were dosed into the stratum corneum side of membranes mounted in side-by-side glass diffusion cells. Appearance of alcohol in the receptor compartment filled with either of the two solutions was monitored over a 7 h period when both stratum corneum (assessed by tape stripping) and the remaining epidermis levels of radioactivity were determined. In a separate study the degree of binding of alcohols to 4% bovine serum albumin was determined. The data showed increased receptor phase solubility in the bovine serum albumin solution and higher permeability coefficients for the more lipophilic alcohols in the series. No changes were seen in the partitioning of the alcohols from the vehicle into either the stratum corneum or tape-stripped epidermis with the two receptor phases; however, a decrease in the amount of the more lipophilic alcohols partitioning into the water receptor phase from the tape-stripped epidermis was observed. We conclude that bovine serum albumin receptor phase allows better estimation of real permeability parameters for lipophilic compounds due to its increased solubility capacity and we question whether permeability parameters for lipophilic solutes from older data sets based on aqueous receptor phases are completely reliable.
Resumo:
The potential applications of macrocycles in chemistry and at its interfaces with biology and physics continue to emerge, one of which is as receptors for small molecules and ions. This review illustrates these applications with examples from the last ten years employing complexation as the binding mechanism; some of the systems presented have already found real-world sensor applications. In any case, the challenges remain to design more selective and sensitive receptors for guests.
Resumo:
Rock phosphates have low solubility in water, but good solubility in acid. The use of organic compounds together with these phosphorus sources applied to the basal leaf axils of pineapple can increase the solubility of this phosfate source and increase the P availability to the crop. A greenhouse experiment was conducted using Araxá rock phosphate (10 g) in combination or not with solutions containing increasing concentrations of humic acids (0 to 40 mmol L-1 of carbon), with or without citric acid (0.005 mmol L-1), applied to basal leaf axils of pineapple cv. Pérola. Growth and nutritional characteristics of aerial plant parts were assessed. Growth rates of aerial parts and N, P, K, Ca and Mg contents increased curvilinearly with increasing concentration of carbon in the form of humic acids. Maximum values were found for the concentration of 9.3 mmol L-1 of carbon combined with 0.005 mmol L-1 of citric acid and natural phosphate.
Resumo:
Phenolic compounds have been extensively studied in recent years. The presence of these compounds in various foods has been associated with sensory and health promoting properties. These products from the secondary metabolism of plants act as defense mechanisms against environmental stress and attack by other organisms. They are divided into different classes according to their chemical structures. The objective of this study was to describe the different classes of phenolic compounds, the main food sources and factors of variation, besides methods for the identification and quantification commonly used to analyze these compounds. Moreover, the role of phenolic compounds in scavenging oxidative stress and the techniques of in vitro antioxidant evaluation are discussed. In vivo studies to evaluate the biological effects of these compounds and their impact on chronic disease prevention are presented as well. Finally, it was discussed the role of these compounds on the sensory quality of foods.
Resumo:
The objective of this study was to evaluate the influence of the color and phenolic compounds of strawberry jam on acceptance during storage. Jams were processed, stored for 120 days and evaluated monthly for chromatic characteristics, total phenolic compounds, total anthocyanins (ANT), total ellagic acid (TEA), flavonoids and free ellagic acid (FEA), and sensory acceptance as well. Data were submitted to analysis of variance (ANOVA) and the means were compared by the Least Significant Difference (LSD). Cluster Analysis and Partial Least Square Regression (PLS) were performed to investigate the relationships between instrumental data and acceptance. Contents of ANT, TEA and redness decreased during storage. Other chemical characteristics and sensory acceptance showed a nonlinear behavior. Higher acceptance was observed after 60 days, suggesting a trend of quality improvement followed by decline to the initial levels. The same trend was observed for lightness, non-pigment flavonoids and FEA. According to PLS map, for consumers in cluster 2, acceptance was associated to jams at 60 days and to luminosity, FEA, and non-pigment flavonoids. For cluster 1, a positive association between flavor liking, jam at initial storage, and the contents of TEA and ANT was indicated. Jams at 120 days were positively associated to hue and negatively associated to color liking, for cluster 1. Color and texture were positively correlated to overall liking for cluster 2, whereas for cluster 1, overall acceptance seemed to be more associated to flavor liking. Changes in color and phenolic compounds slightly influenced the acceptance of strawberry jams, but in different ways for consumers clusters.