984 resultados para ADSORPTION-KINETICS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tetragonal ZrO2 was synthesized by the solution combustion technique using glycine as the fuel. The compound was characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and BET surface area analysis. The ability of this compound to adsorb dyes was investigated, and the compound had a higher adsorption capacity than commercially activated carbon. Infrared spectroscopic observations were used to determine the various interactions and the groups responsible for the adsorption activity of the compound. The effects of the initial concentration of the dye, temperature, adsorbent concentration, and pH of the solution were studied. The kinetics of adsorption was described as a first-order process, and the relative magnitudes of internal and external mass transfer processes were determined. The equilibrium adsorption was also determined and modeled by a composite Langmuir-Freundlich isotherm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Base metal substituted Sn(0.95)M(0.05)O(2-delta) (M = Cu, Fe, Mn, Co) catalysts were synthesized by the solution combustion method and characterized by XRD, XPS, TEM and BET surface area analysis. The catalytic activities of these materials were investigated by performing CO oxidation. The rates and the apparent activation energies of the reaction for CO oxidation were determined for each catalyst. All the substituted catalysts showed high rates and lower activation energies for the oxidation of CO as compared to unsubstituted SnO(2). The rate was found to be much higher over copper substituted SnO(2) as compared to other studied catalysts. 100% CO conversion was obtained below 225 degrees C over this catalyst. A bifunctional reaction mechanism was developed that accounts for CO adsorption on base metal and support ions and O(2) dissociation on the oxide ion vacancy. The kinetic parameters were determined by fitting the model to the experimental data. The high rates of the CO oxidation reactions at low temperatures were rationalized by the high dissociative chemisorption of adsorbed O(2) over these catalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adhesion of Thiobacillus ferrooxidans to pyrite and chalcopyrite in relation to its importance in bioleaching and bioflotation has been studied. Electrokinetic studies as well as FT-IR spectra suggest that the surface chemistry of Thiobacillus ferrooxidans depends on bacterial growth conditions. Sulfur-,Pyrite- and chalcopyrite-grown Thiobacillus ferrooxidans were found to be relatively more hydrophobic. The altered surface chemistry of Thiobacillus ferrooxidans was due to secretion of newer and specific proteinaceous compounds. The adsorption density corresponds to a monolayer coverage in a horizontal orientation of the cells. The xanthate flotation of pyrite in presence of Thiobacillus ferrooxidans is strongly depressed where as the cells have insignificant effect on chalcopyrite flotation. This study demonstrate that: (a)Thiobacillus ferrooxidans cells can be used for selective flotation of chalcopyrite from pyrite and importantly at natural pH values. (b)Sulfur-grown cells exhibits higher leaching kinetics than ferrous ion-grown cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inverse suspension polymerization was carried out to synthesize poly(acrylic acid-co-sodium acrylate-co-acrylamide) superabsorbent polymers (SAPs) crosslinked with ethylene glycol dimethacrylate (EGDMA). The equilibrium swelling capacities of the SAPs, determined by swelling them in DI water, were found to vary with the acrylamide (AM) content. The SAPs were used to adsorb four cationic dyes (Acriflavine, Auramine-O, Azure-I and Pyronin-Y). The effect of AM content in the SAPs on the adsorption of the cationic dyes was investigated. Different initial concentrations of Azure-I were used with the same amount of the SAP to explore the effect of initial dye concentration on the adsorption. The effect of the adsorbent amount was investigated by taking different amounts of SAP with a fixed initial concentration of Acriflavine. The kinetics of the dye adsorption was modeled by a first order model and the equilibrium amount of the dye adsorbed, adsorption rate coefficients, removal efficiency and partition coefficients were determined. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cationic monomer 2-(methacryloyloxy)ethyl]trimethylammonium chloride was polymerized using N,N'-methylenebisacrylamide as the crosslinker to obtain a cationic superabsorbent polymer (SAP). This SAP was characterized by Fourier transform-infrared spectroscopy, and the equilibrium swelling capacity was determined by swelling in water. The SAP was subjected to cyclic swelling/deswelling in water and NaCl solution. The conductivity of the swelling medium was monitored during the swelling/deswelling and was related to the swelling/deswelling characteristics of the SAP. The adsorption of five anionic dyes of different classes on the SAP was carried out and was found to follow the first-order kinetics. The Langmuir adsorption isotherms were found to fit the equilibrium adsorption data. The dye adsorption capacity of the SAP synthesized in this study was higher than that obtained for other hydrogels reported in the literature. (c) 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research paper presents the first results on the protein adsorption and release kinetics and in vitro biodegradability of cryogenically cured hydroxyapatite-gelatin based micro/macroporous scaffolds (CHAMPS). While the adsorption and release of bovine serum albumin (BSA) protein exhibits steady state behavior over an incubation period of up to 10 days, Fourier transform infrared (FT-IR) analysis importantly confirms the absence of any change in the secondary structure of BSA proteins due to interaction with the CHAMPS scaffold. The compression properties of the CHAMPS scaffold with interconnected porosity (pore size similar to 50-200 mm) is characterized by a non-linear stress-strain response with a strength close to 5 MPa and a maximum strain of up to 24%. The slow but systematic increase in weight loss over a period of 7 days as well as apatite layer formation indicates its good bioactivity. The extensive micro-computed tomography (micro-CT) analysis establishes cancellous bone-like highly interconnected and complex porous architecture of the CHAMPS scaffold. Importantly, the excellent adsorption (up to 50%) and release (up to 60% of adsorbed protein) of BSA has been uniquely attributed to the inherent porous microstructure of the CHAMPS scaffold. Overall, the present study provides an assessment of the interaction of protein with the gelatin-hydroxyapatite macroporous scaffold in vitro, as well as reporting for the first time the efficacy of such scaffolds to release 60% of BSA loaded onto the scaffold in vitro, which is significantly higher than earlier literature reports.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desalination is one of the most traditional processes to generate potable water. With the rise in demand for potable water and paucity of fresh water resources, this process has gained special importance. Conventional thermal desalination processes involves evaporative methods such as multi-stage flash and solar distils, which are found to be energy intensive, whereas reverse osmosis based systems have high operating and maintenance costs. The present work describes the Adsorption Desalination (AD) system, which is an emerging process of thermal desalination cum refrigeration capable of utilizing low grade heat easily obtainable from even non-concentrating type solar collectors. The system employs a combination of flash evaporation and thermal compression to generate cooling and desalinated water. The current study analyses the system dynamics of a 4-bed single stage silica-gel plus water based AD system. A lumped model is developed using conservation of energy and mass coupled with the kinetics of adsorption/desorption process. The constitutive equations for the system components viz. evaporator, adsorber and condenser, are solved and the performance of the system is evaluated for a single stage AD system at various condenser temperatures and cycle times to determine optimum operating conditions required for desalination and cooling. (C) 2013 P. Dutta. Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations are performed to study the interaction of His-tagged peptide with three different metal surfaces in explicit water. The equilibrium properties are analyzed by using pair correlation functions (PCF) to give an insight into the behavior of the peptide adsorption to metal surfaces in water solvent. The intermolecular interactions between peptide residues and the metal surfaces are evaluated. By pulling the peptide away from the peptide in the presence of solvent water, peeling forces are obtained and reveal the binding strength of peptide adsorption on nickel, copper and gold. From the analysis of the dynamics properties of the peptide interaction with the metal surfaces, it is shown that the affinity of peptide to Ni surface is the strongest, while on Cu and An the affinity is a little weaker. In MD simulations including metals, the His-tagged region interacts with the substrate to an extent greater than the other regions. The work presented here reveals various interactions between His-tagged peptide and Ni/Cu/Au surfaces. The interesting affinities and dynamical properties of the peptide are also derived. The results give predictions for the structure of His-tagged peptide adsorbing on three different metal surfaces and show the different affinities between them, which assist the understanding of how peptides behave on metal surfaces and of how designers select amino sequences in molecule devices design. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface reaction mechanism of Si1-xGex/Si growth using SiH4 and GeH4 in UHV/CVD system was studied. The saturated adsorption and desorption of SiH4 from Si(1 0 0) surface was investigated with the help of TPD and RHEED, and it was found that all the 4 hydrogen atoms of one SiH4 molecule were adsorbed to the Si surface, which meant that the dissociated adsorption ratio was proportional to 4 power of surface vacancies. The analysis of the reaction of GeH4 was also done. A new surface reaction kinetic model on Si1-xGex/Si epitaxial growth under UHV conditions by SiH4/GeH4 was proposed based on these studies. The predictions of the model were verified by the experimental results. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption behavior of exogenous thorium on soil was studied to evaluate the contaminated risk on soil. The adsorption capacity, equilibrium time, distribution coefficient and desorption ability were investigated by the experiments of static adsorption. The strong adsorption ability of exogenous thorium on soil samples was observed by high adsorption ratio (> 92%) and low desorption ratio (< 5%) in equilibrium, and the biggest distribution coefficient was over 10(4). The adsorption capacity and equilibrium time were related to soil properties. According to the results of adsorption, Freundlich equation (r >= 0.916 7) and Elovich equation (R-2 >= 0. 898 0) were primely fit for describing the thermodynamics and kinetics of the adsorption of exogenous thorium on soil samples, respectively, which indicated that the adsorption was belonged to the nonlinear adsorption, and was affected by the diffusion of thorium on soil surface and in mineral interbed. Sequential extraction procedure was employed to evaluate the bound fractions of exogenous thorium adsorbed on soil samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influences of additive, diluents, temperature, acidity of the aqueous phase on the interfacial behavior of primary amine N1923 in sulfate media have been investigated using the Du Nouy ring method. In addition, the effect of concentration of thorium(IV) loaded in the organic phase on the interfacial tension has also been studied. The interfacial tension isotherms are processed by matching different adsorption equations such as the Gibbs and the Szyszkowski. The surface excess at the saturated interface (Gamma (max)) and the minimum bulk concentration of the extractant necessary to saturate the interface (C-min) under different conditions are calculated according to two adsorption equations to be presented in comprehensive tables and figures. It appears that primary amine N1923 has strong interfacial activity and behaves very differently in various diluents systems. The surface excess at saturated interface increase with the type of diluerits in the following order: chloroform < aromatic hydrocarbons < aliphatic hydrocarbons. The relationship between the interfacial activity and kinetics of thorium extraction by primary amine N1923 has been discussed by considering different factors. However, the interfacial activity of primary amine N1923 is only a qualitative parameter suggesting the interfacial mechanism for thorium extraction, it cannot give strong evidence quantitatively supporting this mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of diluents, temperature, acidity, and ionic strength of the aqueous phase on the interfacial properties of DEHEHP have been extensively investigated using the Du Nouy ring method. In addition, the effect of cerium(IV) concentration loaded in the organic phase on the interfacial tension has also been studied. With the increase of DEHEHP concentration, the value of interfacial tension (gamma) decreases in the studied system, which shows that DEHEHP has interfacial activity as a kind of surfactant. The surface excess at the saturated interface (Gamma(max)) and the minimum bulk concentration of the extractant necessary to saturate the interface (C-min) under the different conditions are calculated according to two adsorption equations such as the Gibbs and Szyszkowski functions to be presented in comprehensive tables and figures. The relationship between the interfacial activity of DEHEHP and cerium(IV) extraction kinetics by DEHEHP has been discussed by considering different factors such as the effects of diluents and temperature. However, the interfacial activity parameter of extractant only is a qualitative parameter, but cannot provide strong enough evidence to quantitatively explain the relationship between extraction kinetics and interfacial properties of an extractant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interfacial tension is measured for Cyanex 302 in heptane and adsorption parameters are calculated according to Gibbs equation and Szyskowski isotherm. The results indicate that Cyanex 302 has a high interfacial activity, allowing easy extraction reaction to take place at the liquid-liquid interface. The extraction kinetics of yttrium(III) with Cyanex 302 in heptane are investigated by a constant interfacial cell with laminar flow. The effects of stirring rate, temperature and specific interfacial area on the extraction rate are discussed. The results suggest that the extraction kinetics is a mixed regime with film diffusion and an aqueous one-step chemical reaction proposed to be the rate-controlling step. Assuming the mass transfer process can be formally treated as a pseudo-first-order reversible reaction with respect to the metal cation, the rate equation for the extraction reaction of yttrium(III) with Cyanex 302 at pH <5 is obtained as follows:R-f = 10(-7.85)[Y(OH)(2)(+)]((a))[H(2)A(2)]((o))(1.00)[H+]((a))(-1.00)Diffusion parameters and rate constants are calculated through approximate solutions of the flux equation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interfacial behavior of sec-nonylphenoxy acetic acid (CA-100) at various diluents/(H, Na)Cl interfaces was examined using the Du Nouy ring method. Different adsorption isotherms such as the Gibbs and Szyszkowski were in good agreement with the experimental data. The values of interfacial excess at saturated interface increase in the following order: n-heptane > kerosene > cyclohexane > CCl4 > toluene > benzene > chloroform. The effects of temperature, acidity, and ionic strength of the aqueous phase on the interfacial activity of CA- 100 were also examined. The interfacial-activity data were used to discuss the mechanism and kinetics of yttrium (Y) extraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different sizes of Frechet-type dendrons with a thiol group at the focal point were synthesized, well characterized, and used as building blocks for the preparation of self-assembled monolayers (SAMs) on metal surfaces. From the studies of the kinetic process of dendron thiol self-assembling on gold, it is shown that the dendron thiol assembling proceeds with different adsorption rates depending on the assembly time. In contrast to normal alkanethiols forming highly molecular structures on metal surfaces, the SAMs of polyether dendron form patterned surfaces with nanometer-sized features and in long-range order. It is found that the patterned stripes are closely related to the size of the dendron, and the patterned stripes can be improved by thermal annealing.