985 resultados para 40-362
Resumo:
A 40-Gb/s monolithically integrated transmitter containing an InGaAsP multiple-quantum-well electroabsorption modulator (EAM) with lumped electrode and a distributed-feedback semiconductor laser is demonstrated. Superior characteristics are exhibited for the device, such as low threshold current of 20 mA, over 40-dB sidemode suppression ratio at 1550 nm, and more than 30-dB dc extinction ratio when coupled into a single-mode fiber. By adopting a deep ridge waveguide and planar electrode structures combined with buried benzocyclobutene, the capacitance of the EAM is reduced to 0.18 pF and the small-signal modulation bandwidth exceeds 33 GHz. Negative chirp operation is also realized when the bias voltage is beyond 1.6 V.
Resumo:
A 40-GHz wavelength tunable mode-locked fiber ring laser based oil cross-gain modulation in a semiconductor optical amplifier (SOA) is presented. Pulse trains with a pulse width of 10.5 ps at 40-GHz repetition frequency are obtained. The laser operates with almost 40-nm tuning range. The relationship between the key laser parameters and the output pulse characteristics is analyzed experimentally.
Resumo:
为预测3种温室气体排放情景(A2、B2和GGa1)下未来40年黄土丘陵沟壑区的气候变化,利用安塞试验站1986—2003年的气候观测资料以及1986—2049年GCM(HadCM3)栅格数据,通过空间转换和时间转换,利用CLIGEN和GCM模型,预测未来40年以安塞为代表的黄土高原丘陵沟壑区的气候变化。结果表明:与当前条件相比,到2049年,A2、B2和GGa1 3种情景下预测的降雨量分别增加37%、22%和12%;3种情景下预测的最大月均降雨量出现在夏季;到2049年,A2、B2和GGa1 3种情景下预测的月均最低气温和月均最高气温皆增加,但差异不明显,年均最低气温和年均最高气温分别增加1.41~1.56℃和0.92~1.57℃。
Resumo:
利用大万山附近1°×1°经纬度网格的卫星高度计资料(1993-2006),计算出
Resumo:
Results are reported of electric-field dependence on thermal emission of electrons from the 0.40 eV level at various temperatures in InGaP by means of deep-level transient spectroscopy. The data are analyzed according to the Poole-Frankel emission from the potentials which are assumed to be Coulombic, square well, and Gaussian, respectively. The emission mte from this level is strongly field dependent. It is found that the Gaussian potential model is more reasonable to describe the phosphorus-vacancy-induced potential in InGaP than the Coulombic and square-well ones.
Resumo:
All-optical clock recovery for the return-to-zero modulation format is demonstrated experimentally at 40 Gbits/s by using an amplified feedback laser. A 40 GHz optical clock with a root-mean-square (rms) timing jitter of 130 fs and a carrier-to-noise ratio of 42 dB is obtained. Also, a 40 GHz optical clock with timing jitter of 137 fs is directly recovered from pseudo-non-return-to-zero signals degraded by polarization-mode dispersion (PMD). No preprocessing stage to enhance the clock tone is used. The rms timing jitter of the recovered clock is investigated for different values of input power and for varying amounts of waveform distortion due to PMD.