965 resultados para 290901 Electrical Engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional detection scheme for self-mixing sensors uses an integrated photodiode within the laser package to monitor the self mixing signal. This arrangement can be simplified by directly obtaining the self-mixing signals across the laser diode itself and omitting the photodiode. This work reports on a Vertical-Cavity Surface-Emitting Laser (VCSEL) based selfmixing sensor using the laser junction voltage to obtain the selfmixing signal. We show that the same information can be obtained with only minor changes to the extraction circuitry leading to potential cost saving with reductions in component costs and complexity and significant increase in bandwidth favoring high speed modulation. Experiments using both photo current and voltage detection were carried out and the results obtained show good agreement with the theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bifurcation analysis is a very useful tool for power system stability assessment. In this paper, detailed investigation of power system bifurcation behaviour is presented. One and two parameter bifurcation analysis are conducted on a 3-bus power system. We also examined the impact of FACTS devices on power system stability through Hopf bifurcation analysis by taking static Var compensator (SVC) as an example. A simplified first-order model of the SVC device is included in the 3-bus sample system. Real and reactive powers are used as bifurcation parameter in the analysis to compare the system oscillatory properties with and without SVC. The simulation results indicate that the linearized system model with SVC enlarge the voltage stability boundary by moving Hopf bifurcation point to higher level of loading conditions. The installation of SVC increases the dynamic stability range of the system, however complicates the Hopf bifurcation behavior of the system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a method to analyze the first order eigenvalue sensitivity with respect to the operating parameters of a power system. The method is based on explicitly expressing the system state matrix into sub-matrices. The eigenvalue sensitivity is calculated based on the explicitly formed system state matrix. The 4th order generator model and 4th order exciter system model are used to form the system state matrix. A case study using New England 10-machine 39-bus system is provided to demonstrate the effectiveness of the proposed method. This method can be applied into large scale power system eigenvalue sensitivity with respect to operating parameters.