310 resultados para (-)-noradrenaline
Resumo:
Background: Pharmacological enhancement in stroke rehabilitation (PESR) is promising. Data about its use in clinical practice are missing. Methods: In a prospective, explorative study of four rehabilitation centers, we systematically observed the frequency and determinants of using PESR in consecutive patients. PESR was defined as using agents potentially enhancing post-stroke recovery exclusively to aid rehabilitation without an established indication. Results: 257 (55.4%) of 464 patients had agents potentially enhancing recovery. Selective serotonin reuptake inhibitors (SSRI) (n = 125, 26.9%), levodopa (n = 114, 24.6%), serotonin-noradrenaline reuptake inhibitors (SNRI) (n = 52, 11.2%), and acetylcholinesterase inhibitors (n = 48, 10.3%) were used most often. SSRI in 102/125 patients and SNRI in 46/52 patients were mostly used for accompanying depressive symptoms. 159 (34.3%) patients had PESR (without an otherwise established indication). In PESR patients, levodopa (n = 102, 64.1%) was used most commonly. PESR was primarily used for aphasia (36.5%) and paresis (25.2%). PESR patients did not differ from non-PESR patients in age, gender and stroke type. However, the utilization rates of PESR differed significantly across centers (2, 4, 38 and 55%). Conclusion: SSRI and SNRI were predominately used for accompanying depression, while levodopa was nearly exclusively used to aid stroke rehabilitation in the absence of an otherwise established indication. The differences in utilization rates for PESR between centers suggest therapeutic uncertainty and indicate the need for additional studies.
Resumo:
Introduction: Venlafaxine (Efexor®) is a serotonin and noradrenaline reuptake inhibitor (SNRI) used for the treatment of depression and anxiety disorders. The limited data on the use of venlafaxine in human pregnancy do not indicate an increased risk of congenital malformations. The main purpose of the study is to assess the rate of major malformations after first trimester exposure to venlafaxine. Methods: This multicenter, prospective cohort study was performed using data from nine centers who are member of the European Network of Teratology Information Services (ENTIS). Data on pregnancy and pregnancy outcome of women who used venlafaxine in pregnancy were collected during individual risk counseling. Standardized procedures for data collection and followup were used by each center. Results: Follow up data were collected on 744 pregnancies of womenwhoused venlafaxine during gestation. In 583 (78.4%) cases the exposure had occurred at least in the first trimester. In total, there were 600 live births (5 twins), 85 spontaneous abortions, 57 elective terminations of pregnancy, 5 fetal deaths, and 2 ectopic pregnancies. The overall rate of major malformations after first trimester exposure and excluding chromosomal and genetic disorders was 3.2% (16/500) in all pregnancies ending in delivery, pregnancy terminations or fetal deaths with fetal-pathological examination. Among live births the malformation rate was 2.7% (13/490). We observed no increased risk for organ specific malformations. Conclusions: The present study indicates that venlafaxine is not a major human teratogen.
Resumo:
Glucose has been considered the major, if not the exclusive, energy substrate for the brain. But under certain physiological and pathological conditions other substrates, namely monocarboxylates (lactate, pyruvate and ketone bodies), can contribute significantly to satisfy brain energy demands. These monocarboxylates need to be transported across the blood-brain barrier or out of astrocytes into the extracellular space and taken up into neurons. It has been shown that monocarboxylates are transported by a family of proton-linked transporters called monocarboxylate transporters (MCTs). In the central nervous system, MCT2 is the predominant neuronal isoform and little is known about the regulation of its expression. Noradrenaline (NA), insulin and IGF-1 were previously shown to enhance the expression of MCT2 in cultured cortical neurons via a translational mechanism. Here we demonstrate that the well known brain neurotrophic factor BDNF enhances MCT2 protein expression in cultured cortical neurons and in synaptoneurosome preparations in a time- and concentrationdependent manner without affecting MCT2 mRNA levels. We observed that BDNF induced MCT2 expression by activation of MAPK as well as PI3K/Akt/mTOR signaling pathways. Furthermore, we investigated the possible post-transcriptional regulation of MCT2 expression by a neuronal miRNA. Then, we demonstrated that BDNF enhanced MCT2 expression in the hippocampus in vivo, in parallel with some post-synaptic proteins such as PSD95 and AMPA receptor GluR2/3 subunits, and two immediate early genes Arc and Zif268 known to be expressed in conditions related to synaptic plasticity. In the last part, we demonstrated in vivo that a downregulation of hippocampal MCT2 via silencing with an appropriate lentiviral vector in mice caused an impairment of working memory without reference memory deficit. In conclusion, these results suggest that regulation of neuronal monocarboxylate transporter MCT2 expression could be a key event in the context of synaptic plasticity, allowing an adequate energy substrate supply in situations of altered synaptic efficacy. - Le glucose représente le substrat énergétique majeur pour le cerveau. Cependant, dans certaines conditions physiologiques ou pathologiques, le cerveau a la capacité d'utiliser des substrats énergéiques appartenant à la classe des monocarboxylates (lactate, pyruvate et corps cétoniques) afin de satisfaire ses besoins énergétiques. Ces monocarboxylates doivent être transportés à travers la barrière hématoencéphalique mais aussi hors des astrocytes vers l'espace extracellulaire puis re-captés par les neurones. Leur transport est assuré par une famillle de transporteurs aux monocarboxylates (MCTs). Dans le système nerveux central, les neurones expriment principalement l'isoforme MCT2 mais peu d'informations sont disponibles concernant la régulation de son expression. Il a été montré que la noradrénaline, l'insuline et l'IGF-1 induisent l'expression de MCT2 dans des cultures de neurones corticaux par un mécanisme traductionnel. Dans cette étude nous démontrons dans un premier temps que le facteur neurotrophique BDNF augmente l'expression de MCT2 à la fois dans des cultures de neurones corticaux et dans les préparations synaptoneurosomales selon un décours temporel et une gamme de concentrations propre. Aucun changement n'a été observé concernant les niveaux d'ARNm de MCT2. Nous avons observé que le BDNF induisait l'expression de MCT2 par l'activation simultanée des voies de signalisation MAPK et PI3K/Akt/mTOR. De plus, nous nous sommes intéressés à une potentielle régulation par les micro-ARNs de la synthèse de MCT2. Ensuite, nous avons démontré que le BDNF induit aussi l'expression de MCT2 dans l'hippocampe de la souris en parallèle avec d'autres protéines post-synaptiques telles que PSD95 et GluR2/3 et avec deux « immediate early genes » tels que Arc et Zif268 connus pour être exprimés dans des conditions de plasticité synaptique. Dans un dernier temps, nous avons démontré qu'une diminution d'expression de MCT2 induite par le biais d'un siRNA exprimé via un vecteur lentiviral dans l'hippocampe de souris générait des déficits de mémoire de travail sans affecter la mémoire de référence. En conclusion, ces résultats nous suggèrent que le transporteur aux monocarboxylates neuronal MCT2 serait essentiel pour l'apport énergétique du lactate pour les neurones dans des conditions de haute activité neuronale comme c'est le cas pendant les processus de plasticité synaptique.
Resumo:
Delayed recovery has been advocated to limit the postoperative stress linked to awakening from anesthesia, but data on this subject are lacking. In this study, we measured oxygen consumption (V(O2)) and plasma catecholamine concentrations as markers of postoperative stress. We tested the hypothesis that delayed recovery and extubation would attenuate metabolic changes after intracranial surgery. Thirty patients were included in a prospective, open study and were randomized into two groups. In Group I, the patients were tracheally extubated as soon as possible after surgery. In Group II, the patients were sedated with propofol for 2 h after surgery. V(O2), catecholamine concentration, mean arterial pressure (MAP), and heart rate (HR) were measured during anesthesia, at extubation, and 30 min after extubation. V(O2) and noradrenaline on extubation and mean V(O2) during recovery were significantly higher in Group II than in Group I (V(O2) for Group I: preextubation 215 +/- 46 mL/min, recovery 198 +/- 38 mL/min; for Group II: preextubation 320 +/- 75 mL/min, recovery 268 +/- 49 mL/min; noradrenaline on extubation for Group I: 207 +/- 76 pg/mL, for Group II: 374 +/- 236 pg/ mL). Extubation induced a significant increase in MAP. MAP, HR, and adrenaline values were not statistically different between groups. In conclusion, delayed recovery after neurosurgery cannot be recommended as a mechanism of limiting the metabolic and hemodynamic consequences from emergence from general anesthesia. IMPLICATIONS: In this study, we tested the hypothesis that delayed recovery after neurosurgery would attenuate the consequences of recovery from general anesthesia. As markers of stress, oxygen consumption and noradrenaline blood levels were higher after delayed versus early recovery. Thus, delayed recovery cannot be recommended as a mechanism of limiting the metabolic and hemodynamic consequences from emergence after neurosurgery.
Resumo:
Physicians are in a unique position to advise smokers to quit by the ability to integrate the various aspects of nicotine dependence. This review provides an overview of the intervention strategies for smokers presented in a primary care setting. The strategies that are used for smoking cessation counselling differ according to the patient's readiness to quit. For smokers who do not intend to give up smoking, physicians should inform about tobacco use and the benefits of cessation. For smokers who are dissonant, physicians should use motivational strategies, such as discussing the barriers to successful cessation and their solutions. For smokers who are ready to quit, the physician should show strong support, help set a date to quit, prescribe pharmaceutical therapies for nicotine dependence, such as nicotine replacement therapy (i.e., gum, transdermal patch, nasal spray, mouth inhaler, lozenges, and micro and sublingual tablets) and/or bupropion (an atypical antidepressant thought to work by blocking the neural re-uptake of dopamine and/or noradrenaline), with instructions for use, and suggest behavioural strategies to prevent relapse. The efficacy of all of these pharmacotherapies is comparable, roughly doubling the cessation rates over control conditions.
Resumo:
Objectives: Levosimendan, a calcium-sensitizing agent has been reported as useful for the management of patients with low cardiac output state. We report here our experience, safety and efficacy of use of levosimendan as rescue therapy after surgery for congenital heart disease. Methods: Retrospective cohort study on patients necessitating levosimendan therapy for post operative low cardiac output or severe post operative systolic and diastolic dysfunction. Twelve patients with a mean age of 2.1 years (range 7 days - 14 years old) received levosimendan. Type of surgery: 3 arterial switch, 3 correction of complete abnormal pulmonary venous return, 3 closure of VSD and correction of aortic coarctation, 3 Tetralogy of Fallot, one correction of truncus arteriosus and one palliation for single ventricle. The mean time of ECC was 203 +/- 81min. Ten patients received levosimendan for low cardiac output not responding to conventional therapy in these cases (milrinone, dopamine and noradrenaline) in the first 6 hours following entry in the ICU and 3 patients received levosimendan 3-4 days after surgery for severe systolic and diastolic dysfunction. Levosimendan was given as a drip for 24-48 hours at the dose of 0.1-0.2 mcg/ kg/min, without loading dose. Results: Significant changes were noted on mean plasmatic lactate (3.3 +/- 1.7mmole/L vs 1.8 +/-0.6mmole/L, p+0.01), mean central venous saturation (55 +/- 11% vs 68 +/- 10%, p+0.01) and mean arterio-venous difference in CO2 (9.6 +/- 4.9mmHg vs 6.7 +/- 2.1mmHg, p+0.05) for values before and at the end of levosimendan administration. There was no significant changes on heart rate, systolic pressure or central venous pressure. No adverse effect was observed. Conclusion: Levosimendan, used as rescue therapy after surgery for congenital heart disease, is safe and improves cardiac output as demonstrated with improvement of parameters commonly used clinically.
Resumo:
OBJECTIVES: The physiological changes associated with fluid bolus therapy (FBT) for patients with infection-associated hypotension in the emergency department (ED) are poorly understood. We describe the physiological outcomes of FBT in the first 6 hours (primary FBT) for patients presenting to the ED with infection-associated hypotension. METHODS: We studied 101 consecutive ED patients with infection and a systolic blood pressure (SBP)<100 mmHg who underwent FBT in the first 6 hours. RESULTS: We screened 1123 patients with infection and identified 101 eligible patients. The median primary FBT volume given was 1570 mL (interquartile range, 1000- 2490 mL). The average mean arterial pressure (MAP) did not change from admission to 6 hours in the whole cohort, or in patients who were hypotensive on arrival at the ED. However, the average MAP increased from its lowest value during the first 6 hours (66 mmHg [SD, 10 mmHg]) to its value at 6 hours (73 mmHg [SD, 12 mmHg]; P<0.001). The mean heart rate, body temperature, respiratory rate and plasma creatinine level decreased (P<0.05). In patients who were severely hypotensive (SBP<90 mmHg) on arrival at the ED, the MAP increased from 54 mmHg (SD, 8 mmHg) to 70 mmHg (SD, 14 mmHg) (P<0.001). At 6 hours, however, SBP was still <100 mmHg in 44 patients and <90 mmHg in 17 patients. When noradrenaline was used, in 10 patients, hypotension was corrected in all 10 and the MAP increased from 58 mmHg (SD, 9 mmHg) to 75 mmHg (SD, 13 mmHg). CONCLUSION: Among ED patients admitted to an Australian teaching hospital with infection, hypotension was uncommon. FBT for hypotension was limited in volumes given and failed to achieve a sustained SBP of >100 mmHg in 40% of cases. In contrast, noradrenaline therapy corrected hypotension in all patients who received it.
Resumo:
Galanin receptor (GalR) subtypes 1-3 linked to central galanin neurons may form heteromers with each other and other types of G protein-coupled receptors in the central nervous system (CNS). These heteromers may be one molecular mechanism for galanin peptides and their N-terminal fragments (gal 1-15) to modulate the function of different types of glia-neuronal networks in the CNS, especially the emotional and the cardiovascular networks. GalR-5-HT1A heteromers likely exist with antagonistic GalR-5-HT1A receptor-receptor interactions in the ascending midbrain raphe 5-HT neuron systems and their target regions. They represent a novel target for antidepressant drugs. Evidence is given for the existence of GalR1-5-HT1A heteromers in cellular models with trans-inhibition of the protomer signaling. A GalR1-GalR2 heteromer is proposed to be a galanin N-terminal fragment preferring receptor (1-15) in the CNS. Furthermore, a GalR1-GalR2-5-HT1A heterotrimer is postulated to explain why only galanin (1-15) but not galanin (1-29) can antagonistically modulate the 5-HT1A receptors in the dorsal hippocampus rich in gal fragment binding sites. The results underline a putative role of different types of GalR-5-HT1A heteroreceptor complexes in depression. GalR antagonists may also have therapeutic actions in depression by blocking the antagonistic GalR-NPYY1 receptor interactions in putative GalR-NPYY1 receptor heteromers in the CNS resulting in increases in NPYY1 transmission and antidepressant effects. In contrast the galanin fragment receptor (a postulated GalR1-GalR2 heteromer) appears to be linked to the NPYY2 receptor enhancing the affinity of the NPYY2 binding sites in a putative GalR1-GalR2-NPYY2 heterotrimer. Finally, putative GalR-α2-adrenoreceptor heteromers with antagonistic receptor-receptor interactions may be a widespread mechanism in the CNS for integration of galanin and noradrenaline signals also of likely relevance for depression
Resumo:
Since the discovery of hypocretins/orexins (Hcrt/Ox) in 1998, several narcoleptic mouse models, such as Hcrt-KO, Hcrtrl-KO, Hcrtr2-KO and double receptors KO mice, and orexin-ataxin transgenic mice were generated. The available Hcrt mouse models do not allow the dissection of the specific role of Hcrt in each target region. Dr. Anne Vassalli generated loxP-flanked alleles for each Hcrt receptor, which are manipulated by Cre recombinase to generate mouse lines with disrupted Hcrtrl or Hcrtr2 (or both) in cell type-specific manner. The role of noradrenaline (NA) and dopamine (OA) in ttie regulation of vigilance states is well documented. The purpose of this thesis is to explore the role of the Hcrt input into these two monoaminergic systems. Chronic loss of Hcrtrl in NA neurons consolidated paradoxical sleep (PS), and altered wakefulness brain activity in baseline, during the sleep deprivation (SD), and when mice were challenged by a novel environment, or exposed to nest-building material. The analysis of alterations in the sleep EEG delta power showed a consistent correlation with the changes in the preceding waking quality in these mice. Targeted inactivation of Hcrt input into DA neurons showed that Hcrtr2 inactivation present the strongest phenotype. The loss of Hcrtr2 in DA neurons caused modified brain activities in spontaneous wakefulness, during SD, and in novel environmental conditions. In addition to alteration of wakefulness quality and quantity, conditional inactivation of Hcrtr2 in DA neurons caused an increased in time spent in PS in baseline and a delayed and less complete PS recovery after SD. In the first 30 min of sleep recovery, single (i.e. for Hcrtrl or Hcrtr2) conditional knockout receptor mice had opposite changes in delta activity, including an increased power density in the fast delta range with specific inactivation of Hcrtr2, but a decreased power density in the same range with specific inactivation of Hcrtrl in DA cells. These studies demonstrate a complex impact of Hcrt receptors signaling in both NA and DA system, not only on quantity and quality of wakefulness, but also on PS amount regulation as well as on SWS delta power expression. -- Depuis la découverte des hypocrétines/orexines (Hcrt/Ox) en 1998, plusieurs modèles de souris, narcoleptiques telles que Hcrt-KO, Hcrtr2-KO et récepteurs doubles KO et les souris transgéniques orexine-ataxine ont été générés. Les modèles de souris Hcrt disponibles ne permettaient pas la dissection du rôle spécifique de l'Hcrt dans chaque noyau neuronal cible. Notre laboratoire a généré des allèles loxP pour chacun des 2 gènes codant pour les récepteurs Hcrtr, qui sont manipulés par recombinase Cre pour générer des lignées de souris avec Hcrtrl inactivé, ou Hcrtr2 inactivé, (ou les deux), spécifiquement dans un type cellulaire particulier. Le rôle de la noradrénaline (NA) et la dopamine (DA) dans la régulation des états de vigilance est bien documentée. Le but de cette thèse est d'étudier le rôle de l'afférence Hcrt dans ces deux systèmes monoaminergiques au niveau de l'activité cérébrale telle qu'elle apparaît dans l'électroencéphalogramme (EEG). Mon travail montre que la perte chronique de Hcrtrl dans les neurones NA consolide le sommeil paradoxal (PS), et l'activité cérébrale de l'éveil est modifiée en condition spontanée, au cours d'une experience de privation de sommeil (SD), et lorsque les souris sont présentées à un nouvel environnement, ou exposées à des matériaux de construction du nid. Ces modifications de l'éveil sont corrélées à des modifications de puissance de l'activité delta du sommeil lent qui le suit. L'inactivation ciblée des Hcrtrs dans les neurones DA a montré que l'inactivation Hcrtr2 conduit au phénotype le plus marqué. La perte de Hcrtr2 dans les neurones DA mène à des modification d'activité cérébrale en éveil spontané, pendant SD, ainsi que dans des conditions environnementales nouvelles. En plus de l'altération de la qualité de l'éveil et de la quantité, l'inactivation conditionnelle de Hcrtr2 dans les neurones DA a provoqué une augmentation du temps passé en sommeil paradoxal (PS) en condition de base, et une reprise retardée et moins complète du PS après SD. Dans les 30 premières minutes de la récupération de sommeil, les modèles inactivés pour un seul des récepteurs (ie pour Hcrtrl ou Hcrtr2 seulement) montrent des changements opposés en activité delta, en particulier une densité de puissance accrue dans le delta rapide avec l'inactivation spécifique de Hcrtr2, mais une densité de puissance diminuée dans cette même gamme chez les souris inactivées spécifiquement en Hcrtrl dans les neurones DA. Ces études démontrent un impact complexe de l'inactivation de la neurotransmission au niveau des récepteurs d'Hcrt dans les deux compartiments NA et DA, non seulement sur la quantité et la qualité de l'éveil, mais aussi sur la régulation de quantité de sommeil paradoxal, ainsi que sur l'expression de la puissance delta pendant le sommeil lent.
Resumo:
OBJECTIVE: White coat hypertensive is a pre-hypertensive state that has been associated with increased sympathetic drive. The objective of the study was to compare the exposure of the kidney to sympathetic nerve activity using urinary normetanephrine (UNMN) as a marker of renal sympathetic exposure in white coat hypertensive (WCH) and healthy normotensive (HN) participants. DESIGN AND METHOD: This was a double-blind randomized placebo-controlled crossover study. WCH were included if office blood pressure was >140/80 mmHg and ambulatory blood pressure <135/85 mmHg and HN if OBP was <140/90 mmHg and ABP <135/85 mmHg Participants were randomized to receive either 16 mg of candesartan or a matched placebo for one week before study day. On the study day systemic and renal hemodynamics as well as plasma norepinephrine and urinary excretion of normetanephrine (measured by LC/MS-MS were measured after one hour of baseline, one hour of lower body negative pressure and one hour of recovery period. Excretion of UNMN was expressed as the total of UNMN excreted during these three hours (cumUNMN). Paired or unpaired t-test were used for comparison. RESULTS: 25 HN and 12 WCH participants were included in the study. Mean age (±standard deviation), BMI were respectively 31.0±10.5 years and 22.0 ± 2.2 Kg/m2 in HN and 40.7±17.8 years and 26.7 ± 6.3 Kg/m2 in WCH.Table 1 Baseline mean blood pressure, plasma noradrenaline and cumulated UNMN during placebo and candesartan(Figure is included in full-text article.)Mean blood pressure was higher during placebo and candesartan in WCH compared to HN. Cumulated UNMN was higher in both groups after candesartan treatment. Cumulated UNMN was higher in WCH than in HN only after candesartan treatment. CONCLUSIONS: Urinary excretion of normetanephrine is increased in WCH compared to HN when treated with candesartan. The increased excretion of uNMN when the renin angiotensin system is blocked might reflect an increased sensitivity of WCH to stress conditions such as orthostatic stress.
Resumo:
Noradrenergic neurotransmission has been associated with the modulation of higher cognitive functions mediated by the prefrontal cortex. In the present study, the impact of noradrenergic stimulation on the human action-monitoring system, as indexed by eventrelated brain potentials, was examined. After the administration of a placebo or the selective 2 -adrenoceptor antagonist yohimbine, which stimulates firing in the locus ceruleus and noradrenaline release, electroencephalograpic recordings were obtained from healthy volunteers performing a letter flanker task. Yohimbine led to an increase in the amplitude of the error-related negativity in conjunction with a significant reduction of action errors. Reaction times were unchanged, and the drug did not modify the N2 in congruent versus incongruent trials, a measure of preresponse conflict, or posterror adjustments as measured by posterror slowing of reaction time. The present findings suggest that the locus ceruleusnoradrenaline system exerts a rather specific effect on human action monitoring.
Resumo:
The action of the neurotransmitters dopamine (DA) and serotonin (5-HT) at synapses is terminated by their rapid reuptake into presynaptic nerve endings via plasma membrane dopamine (DAT) and serotonin (SERT) transporters. Alterations in the function of these transporters have been suggested as a feature of several neurological and neuropsychiatric diseases, such as Parkinson’s disease (PD), depression, and anxiety. A suitable clinical method for studying these transporters non-invasively in vivo is positron emission tomography (PET) utilizing radiopharmaceuticals (tracers) labelled with short-lived positron-emitting radionuclides. The aim of this study was to evaluate in rats two novel radiotracers, [18F]beta -CFT-FP and 18FFMe-McN, for imaging DAT and SERT, respectively, using in vitro, ex vivo and in vivo methods. Substituting an N-methyl in [18F]beta-CFT, a well known DAT tracer, with a 18Ffluoropropyl group significantly changed the properties of the tracer. [18F]beta- CFT showed slow kinetics and metabolism, and a high specific uptake in the striatum, whereas [18F]beta-CFT-FP showed fast kinetics and metabolism, and a moderate specific uptake in the striatum. [18F]betaCFT-FP was selective for DAT; but [18F]beta-CFT also bound to the noradrenaline transporter. [18F]beta-CFT-FP may be a suitable PET tracer for imaging the striatal DAT sites, but a tracer with a higher affinity is needed for imaging extrastriatal DAT sites. In rats, 18FFMe-McN showed high target-to-non-target ratios, specificity and selectivity for SERT, but slow kinetics. However, 18FFMe-McN reveals potential for imaging SERT, at least in pre-clinical studies. In addition, the sensitivities of [18F]beta CFT and [18 F]FDOPA (a precursor of DA) for detecting mild nigrostriatal hypofunction were compared in an animal model of PD. The uptake of [18F]FDOPA was significantly affected by compensatory effects in dopaminergic cells, whereas [18F]beta-CFT was more sensitive and therefore more suitable for PET studies of mild dopaminergic symptoms. In conclusion, both novel tracers, [18F]-CFT-FP and 18FFMe-McN, have potential, but are not optimal PET tracers for DAT and SERT imaging in rats, respectively. [18F]beta-CFT is superior to [18F]FDOPA for imaging mild nigral lesions in rat brains.
Resumo:
Alpha2-Adrenoceptors are cell-surface G protein coupled receptors that mediate many of the effects of the catecholamines noradrenaline and adrenaline. The three human α2-adrenoceptor subtypes are widely expressed in different tissues and organs, and they mediate many different physiological and pharmacological effects in the central and peripheral nervous system and as postsynaptic receptors in target organs. Previous studies have demonstrated that α2-adrenoceptors mediate both vascular constriction and dilatation in humans. Large inter-individual variation has been observed in the vascular responses to α2-adrenoceptor activation in clinical studies. All three receptor subtypes are potential drug targets. It was therefore considered important to further elucidate the details of adrenergic vascular regulation and its genetic variation, since such knowledge may help to improve the development of future cardiovascular drugs and intensive care therapies. Dexmedetomidine is the most selective and potent α2-adrenoceptor agonist currently available for clinical use. When given systemically, dexmedetomidine induces nearly complete sympatholysis already at low concentrations, and postsynaptic effects, such vasoconstriction, can be observed with increasing concentrations. Thus, local infusions of small doses of dexmedetomidine into dorsal hand veins and the application of pharmacological sympathectomy with brachial plexus block provide a means to assess drug-induced peripheral vascular responses without interference from systemic pharmacological effects and autonomic nervous system regulation. Dexmedetomidine was observed to have biphasic effects on haemodynamics, with an initial decrease in blood pressure at low concentrations followed by substantial increases in blood pressure and coronary vascular resistance at high concentrations. Plasma concentrations of dexmedetomidine that significantly exceeded the recommended therapeutic level did not reduce myocardial blood flow below the level that is observed with the usual therapeutic concentrations and did not induce any evident myocardial ischaemia in healthy subjects. Further, it was demonstrated that dexmedetomidine also had significant vasodilatory effects through activation of endothelial nitric oxide synthesis, and thus when the endothelial component of the blood vessel response to dexmedetomidine was inhibited, peripheral vasoconstriction was augmented. Hand vein constriction responses to α2-adrenoceptor activation by dexmedetomidine were only weakly associated with the constriction responses to α1-adrenoceptor activation, pointing to independent cellular regulation by these two adrenoceptor classes. Substantial inter-individual variation was noted in the venous constriction elicited by activation of α2-adrenoceptors by dexmedetomidine. In two study populations from two different continents, a single nucleotide polymorphism in the PRKCB gene was found to be associated with the dorsal hand vein constriction response to dexmedetomidine, suggesting that protein kinase C beta may have an important role in the vascular α2-adrenoceptor signalling pathways activated by dexmedetomidine.
Resumo:
Adrenoceptors (ARs), G-protein coupled receptors (GPCRs) at the plasma membrane, respond to endogenous catecholamines noradrenaline and adrenaline. These receptors mediate several important physiological functions being especially important in the cardiovascular system and in the regulation of smooth muscle contraction. Impairments in the function of these receptors can thus lead to severe diseases and disorders such as to cardiovascular diseases and benign prostatic hyperplasia. The Eastern green mamba (Dendroaspis angusticeps) venom has been shown to contain toxins that can antagonize the functions of GPCRs. The most well-known are muscarinic toxins (MTs) targeting muscarinic acetylcholine receptors (mAChRs) with high affinity and selectivity. However, some reports have indicated that these toxins might also act on the α1- and α2-ARs which can be divided into various subtypes; the α1-ARs to α1A-, α1B- and α1D-ARs and α2-ARs to α2A-, α2B- and α2C-ARs. In this thesis, the interaction of four common MTs (MT1, MT3, MT7 and MTα) with the adrenoceptors was characterized. It was also evaluated whether these toxins could be anchored to the plasma membrane via glycosylphosphatidylinositol (GPI) tail. Results of this thesis reveal that muscarinic toxins are targeting several α-adrenoceptor subtypes in addition to their previously identified target receptors, mAChRs. MTα was found to interact with high affinity and selectivity with the α2B-AR whereas MT7 confirmed its selectivity for the M1 mAChR. Unlike MTα and MT7, MT1 and MT3 have a broad range of target receptors among the α-ARs. All the MTs characterized were found to behave as non-competitive antagonists of receptor action. The interaction between MTα and the α2B-AR was studied more closely and it was observed that the second extracellular loop of the receptor functions as a structural entity enabling toxin binding. The binding of MTα to the α2B-AR appears to be rather complex and probably involves dimerized receptor. Anchoring MTs to the plasma membrane did not interfere with their pharmacological profile; all the GPI-anchored toxins created retained their ability to block their target receptors. This thesis shows that muscarinic toxins are able to target several subtypes of α-ARs and mAChRs. These toxins offer thus a possibility to create new subtype specific ligands for the α-AR subtypes. Membrane anchored MTs on the other hand could be used to block α-AR and mAChR actions in disease conditions such as in hypertension and in gastrointestinal and urinary bladder disorders in a cell-specific manner and to study the physiological functions of ARs and mAChRs in vivo in model organisms.
Resumo:
Water and saline intake is controlled by several mechanisms activated during dehydration. Some mechanisms, such as the production of angiotensin II and unloading of cardiovascular receptors, activate both behaviors, while others, such as the increase in blood osmolality or sodium concentration, activate water, but inhibit saline intake. Aldosterone probably activates only saline intake. Clonidine, an a2-adrenergic agonist, inhibits water and saline intake induced by these mechanisms. One model to describe the interactions between these multiple mechanisms is a wire-block diagram, where the brain circuit that controls each intake is represented by a summing point of its respective inhibiting and activating factors. The a2-adrenoceptors constitute an inhibitory factor common to both summing points