865 resultados para word decoding
Resumo:
The purpose of this research was to investigate the role of electronic word of mouth (eWOM) in shaping consumer attitudes towards various products and services with concentration on the consumer attitude change. eWOM has long been proven to play an important role in influencing consumer attitudes and has been researched from a variety of perspectives. This study attempts to look deeper into the process of consumer attitude change by applying as the central theory of the study the Elaboration Likelihood Model of Persuasion by Petty and Cacioppo. In the processes of examining the background academic and empirical research the Internet and Web 2.0 are closely depicted in order to understand how throughout the past centuries technology allowed the rise of various mediums where consumers can not only share their opinions online about products and services but also communicate with other consumers. Manuel Castel’s Internet Galaxy, Gildin’s, Carl and Noland’s, Hennig-Thurau, Gwinner, Walsh and Gremler’s researches on eWOM are the central works that helped to shape both the theoretical and empirical parts of this study. The mixed method approach was chosen as a research method for this study. An online survey was conducted via the Surveymonkey.com platform and eight qualitative in-depth interviews were conducted. The results of the study show that central route queues as text quality and text argumentativeness are more prominent among the research subjects and the peripheral route queues: source credibility and source expertise did not show considerable significance. Also more experience and participation consumers have with user-rating websites and applications more inclined they are to elaborate on the central route cues and are more likely to search for opinions that they consider rational and credible. Also these respondents are less inclined to search for ratings that confirm their existing beliefs about products or services. Less experience/participation they have about eWOM more likely they are to search for reviews confirmatory to their own.
Resumo:
For an n(t) transmit, n(r) receive antenna system (n(t) x nr system), a full-rate space time block code (STBC) transmits min(n(t), n(r)) complex symbols per channel use. In this paper, a scheme to obtain a full-rate STBC for 4 transmit antennas and any n(r), with reduced ML-decoding complexity is presented. The weight matrices of the proposed STBC are obtained from the unitary matrix representations of a Clifford Algebra. By puncturing the symbols of the STBC, full rate designs can be obtained for n(r) < 4. For any value of n(r), the proposed design offers the least ML-decoding complexity among known codes. The proposed design is comparable in error performance to the well known Perfect code for 4 transmit antennas while offering lower ML-decoding complexity. Further, when n(r) < 4, the proposed design has higher ergodic capacity than the punctured Perfect code. Simulation results which corroborate these claims are presented.
Resumo:
Recently, Guo and Xia gave sufficient conditions for an STBC to achieve full diversity when a PIC (Partial Interference Cancellation) or a PIC-SIC (PIC with Successive Interference Cancellation) decoder is used at the receiver. In this paper, we give alternative conditions for an STBC to achieve full diversity with PIC and PIC-SIC decoders, which are equivalent to Guo and Xia's conditions, but are much easier to check. Using these conditions, we construct a new class of full diversity PIC-SIC decodable codes, which contain the Toeplitz codes and a family of codes recently proposed by Zhang, Xu et. al. as proper subclasses. With the help of the new criteria, we also show that a class of PIC-SIC decodable codes recently proposed by Zhang, Shi et. al. can be decoded with much lower complexity than what is reported, without compromising on full diversity.
Resumo:
Low complexity decoders called Partial Interference Cancellation (PIC) and PIC with Successive Interference Cancellation (PIC-SIC), which include the Zero Forcing (ZF) and ZF-SIC receivers as special cases, were given by Guo and Xia along with sufficient conditions for a Space-Time Block Code (STBC) to achieve full diversity with PIC/PIC-SIC decoding for point-to-point MIMO channels. In Part-I of this two part series of papers, we give new conditions for an STBC to achieve full diversity with PIC and PIC-SIC decoders, which are equivalent to Guo and Xia's conditions, but are much easier to check. We then show that PIC and PIC-SIC decoders are capable of achieving the full cooperative diversity available in wireless relay networks and give sufficient conditions for a Distributed Space-Time Block Code (DSTBC) to achieve full diversity with PIC and PIC-SIC decoders. In Part-II, we construct new low complexity full-diversity PIC/PIC-SIC decodable STBCs and DSTBCs that achieve higher rates than the known full-diversity low complexity ML decodable STBCs and DSTBCs.
Resumo:
In this second part of a two part series of papers, we construct a new class of Space-Time Block Codes (STBCs) for point-to-point MIMO channel and Distributed STBCs (DSTBCs) for the amplify-and-forward relay channel that give full-diversity with Partial Interference Cancellation (PIC) and PIC with Successive Interference Cancellation (PIC-SIC) decoders. The proposed class of STBCs include most of the known full-diversity low complexity PIC/PIC-SIC decodable STBCs as special cases. We also show that a number of known full-diversity PIC/PIC-SIC decodable STBCs that were constructed for the point-topoint MIMO channel can be used as full-diversity PIC/PIC-SIC decodable DSTBCs in relay networks. For the same decoding complexity, the proposed STBCs and DSTBCs achieve higher rates than the known low decoding complexity codes. Simulation results show that the new codes have a better bit error rate performance than the low ML decoding complexity codes available in the literature.
Resumo:
The Generalized Distributive Law (GDL) is a message passing algorithm which can efficiently solve a certain class of computational problems, and includes as special cases the Viterbi's algorithm, the BCJR algorithm, the Fast-Fourier Transform, Turbo and LDPC decoding algorithms. In this paper GDL based maximum-likelihood (ML) decoding of Space-Time Block Codes (STBCs) is introduced and a sufficient condition for an STBC to admit low GDL decoding complexity is given. Fast-decoding and multigroup decoding are the two algorithms used in the literature to ML decode STBCs with low complexity. An algorithm which exploits the advantages of both these two is called Conditional ML (CML) decoding. It is shown in this paper that the GDL decoding complexity of any STBC is upper bounded by its CML decoding complexity, and that there exist codes for which the GDL complexity is strictly less than the CML complexity. Explicit examples of two such families of STBCs is given in this paper. Thus the CML is in general suboptimal in reducing the ML decoding complexity of a code, and one should design codes with low GDL complexity rather than low CML complexity.
Resumo:
In this paper, we propose a novel heuristic approach to segment recognizable symbols from online Kannada word data and perform recognition of the entire word. Two different estimates of first derivative are extracted from the preprocessed stroke groups and used as features for classification. Estimate 2 proved better resulting in 88% accuracy, which is 3% more than that achieved with estimate 1. Classification is performed by statistical dynamic space warping (SDSW) classifier which uses X, Y co-ordinates and their first derivatives as features. Classifier is trained with data from 40 writers. 295 classes are handled covering Kannada aksharas, with Kannada numerals, Indo-Arabic numerals, punctuations and other special symbols like $ and #. Classification accuracies obtained are 88% at the akshara level and 80% at the word level, which shows the scope for further improvement in segmentation algorithm
Resumo:
A modification of the Viterbi decoding algorithm is suggested for faster convergence.
Resumo:
In this paper, we give a new framework for constructing low ML decoding complexity space-time block codes (STBCs) using codes over the Klein group K. Almost all known low ML decoding complexity STBCs can be obtained via this approach. New full- diversity STBCs with low ML decoding complexity and cubic shaping property are constructed, via codes over K, for number of transmit antennas N = 2(m), m >= 1, and rates R > 1 complex symbols per channel use. When R = N, the new STBCs are information- lossless as well. The new class of STBCs have the least knownML decoding complexity among all the codes available in the literature for a large set of (N, R) pairs.
Resumo:
Parallel sub-word recognition (PSWR) is a new model that has been proposed for language identification (LID) which does not need elaborate phonetic labeling of the speech data in a foreign language. The new approach performs a front-end tokenization in terms of sub-word units which are designed by automatic segmentation, segment clustering and segment HMM modeling. We develop PSWR based LID in a framework similar to the parallel phone recognition (PPR) approach in the literature. This includes a front-end tokenizer and a back-end language model, for each language to be identified. Considering various combinations of the statistical evaluation scores, it is found that PSWR can perform as well as PPR, even with broad acoustic sub-word tokenization, thus making it an efficient alternative to the PPR system.
Resumo:
In this paper, we employ message passing algorithms over graphical models to jointly detect and decode symbols transmitted over large multiple-input multiple-output (MIMO) channels with low density parity check (LDPC) coded bits. We adopt a factor graph based technique to integrate the detection and decoding operations. A Gaussian approximation of spatial interference is used for detection. This serves as a low complexity joint detection/decoding approach for large dimensional MIMO systems coded with LDPC codes of large block lengths. This joint processing achieves significantly better performance than the individual detection and decoding scheme.