932 resultados para water quality assessment
Resumo:
Understanding the impacts of traffic and climate change on water quality helps decision makers to develop better policy and plans for dealing with unsustainable urban and transport development. This chapter presents detailed methodologies developed for sample collection and testing for heavy metals and total petroleum hydrocarbons, as part of a research study to investigate the impacts of climate change and changes to urban traffic characteristics on pollutant build-up and wash-off from urban road surfaces. Cadmium, chromium, nickel, copper, lead, iron, aluminium, manganese and zinc were the target heavy metals, and selected gasoline and diesel range organics were the target total petroleum hydrocarbons for this study. The study sites were selected to encompass the urban traffic characteristics of the Gold Coast region, Australia. An improved sample collection method referred to as ‘the wet and dry vacuum system’ for the pollutant build-up, and an effective wash-off plan to incorporate predicted changes to rainfall characteristics due to climate change, were implemented. The novel approach to sample collection for pollutant build-up helped to maintain the integrity of collection efficiency. The wash-off plan helped to incorporate the predicted impacts of climate change in the Gold Coast region. The robust experimental methods developed will help in field sample collection and chemical testing of different stormwater pollutants in build-up and wash-off.
Resumo:
Microbial pollution in water periodically affects human health in Australia, particularly in times of drought and flood. There is an increasing need for the control of waterborn microbial pathogens. Methods, allowing the determination of the origin of faecal contamination in water, are generally referred to as Microbial Source Tracking (MST). Various approaches have been evaluated as indicatorsof microbial pathogens in water samples, including detection of different microorganisms and various host-specific markers. However, until today there have been no universal MST methods that could reliably determine the source (human or animal) of faecal contamination. Therefore, the use of multiple approaches is frequently advised. MST is currently recognised as a research tool, rather than something to be included in routine practices. The main focus of this research was to develop novel and universally applicable methods to meet the demands for MST methods in routine testing of water samples. Escherichia coli was chosen initially as the object organism for our studies as, historically and globally, it is the standard indicator of microbial contamination in water. In this thesis, three approaches are described: single nucleotide polymorphism (SNP) genotyping, clustered regularly interspaced short palindromic repeats (CRISPR) screening using high resolution melt analysis (HRMA) methods and phage detection development based on CRISPR types. The advantage of the combination SNP genotyping and CRISPR genes has been discussed in this study. For the first time, a highly discriminatory single nucleotide polymorphism interrogation of E. coli population was applied to identify the host-specific cluster. Six human and one animal-specific SNP profile were revealed. SNP genotyping was successfully applied in the field investigations of the Coomera watershed, South-East Queensland, Australia. Four human profiles [11], [29], [32] and [45] and animal specific SNP profile [7] were detected in water. Two human-specific profiles [29] and [11] were found to be prevalent in the samples over a time period of years. The rainfall (24 and 72 hours), tide height and time, general land use (rural, suburban), seasons, distance from the river mouth and salinity show a lack of relashionship with the diversity of SNP profiles present in the Coomera watershed (p values > 0.05). Nevertheless, SNP genotyping method is able to identify and distinquish between human- and non-human specific E. coli isolates in water sources within one day. In some samples, only mixed profiles were detected. To further investigate host-specificity in these mixed profiles CRISPR screening protocol was developed, to be used on the set of E. coli, previously analysed for SNP profiles. CRISPR loci, which are the pattern of previous DNA coliphages attacks, were considered to be a promising tool for detecting host-specific markers in E. coli. Spacers in CRISPR loci could also reveal the dynamics of virulence in E. coli as well in other pathogens in water. Despite the fact that host-specificity was not observed in the set of E. coli analysed, CRISPR alleles were shown to be useful in detection of the geographical site of sources. HRMA allows determination of ‘different’ and ‘same’ CRISPR alleles and can be introduced in water monitoring as a cost-effective and rapid method. Overall, we show that the identified human specific SNP profiles [11], [29], [32] and [45] can be useful as marker genotypes globally for identification of human faecal contamination in water. Developed in the current study, the SNP typing approach can be used in water monitoring laboratories as an inexpensive, high-throughput and easy adapted protocol. The unique approach based on E. coli spacers for the search for unknown phage was developed to examine the host-specifity in phage sequences. Preliminary experiments on the recombinant plasmids showed the possibility of using this method for recovering phage sequences. Future studies will determine the host-specificity of DNA phage genotyping as soon as first reliable sequences can be acquired. No doubt, only implication of multiple approaches in MST will allow identification of the character of microbial contamination with higher confidence and readability.
Resumo:
Urban traffic and climate change are two phenomena that have the potential to degrade urban water quality by influencing the build-up and wash-off of pollutants, respectively. However, limited knowledge has made it difficult to establish any link between pollutant buildup and wash-off under such dynamic conditions. In order to safeguard urban water quality, adaptive water quality mitigation measures are required. In this research, pollutant build-up and wash-off have been investigated from a dynamic point of view which incorporated the impacts of changed urban traffic as well as changes in the rainfall characteristics induced by climate change. The study has developed a dynamic object classification system and thereby, conceptualised the study of pollutant build-up and wash-off under future changes in urban traffic and rainfall characteristics. This study has also characterised the buildup and wash-off processes of traffic generated heavy metals, volatile, semi-volatile and non-volatile hydrocarbons under dynamic conditions which enables the development of adaptive mitigation measures for water quality. Additionally, predictive frameworks for the build-up and wash-off of some pollutants have also been developed.
Resumo:
The pollutant impacts of urban stormwater runoff on receiving waters are well documented in research literature. However, it is road surfaces that are commonly identified as the significant pollutant source. This paper presents the outcomes of an extensive program of research into the role of roof surfaces in urban water quality with particular focus on solids, nutrients and organic carbon. The outcomes confirmed that roof surfaces play an important role in influencing the pollutant characteristics of urban stormwater runoff. Pollutant build-up and wash-off characteristics for roads and roof surfaces were found to be appreciably different. The pollutant wash-off characteristics exhibited by roof surfaces show that it influences the first flush phenomenon more significantly than road surfaces. In most urban catchments, as roof surfaces constitutes a higher fraction of impervious area compared to road surfaces, it is important that the pollutant generation role of roof surfaces is specifically taken into consideration in stormwater quality mitigation strategies.
Resumo:
Understanding the impacts of traffic and climate change on water quality helps decision makers to develop better policy and plans for dealing with unsustainable urban and transport development. This chapter presents detailed methodologies developed for sample collection and testing for heavy metals and total petroleum hydrocarbons, as part of a research study to investigate the impacts of climate change and changes to urban traffic characteristics on pollutant build-up and wash-off from urban road surfaces. Cadmium, chromium, nickel, copper, lead, iron, aluminium, manganese and zinc were the target heavy metals, and selected gasoline and diesel range organics were the target total petroleum hydrocarbons for this study. The study sites were selected to encompass the urban traffic characteristics of the Gold Coast region, Australia. An improved sample collection method referred to as ‘the wet and dry vacuum system’ for the pollutant build-up, and an effective wash-off plan to incorporate predicted changes to rainfall characteristics due to climate change, were implemented. The novel approach to sample collection for pollutant build-up helped to maintain the integrity of collection efficiency. The wash-off plan helped to incorporate the predicted impacts of climate change in the Gold Coast region. The robust experimental methods developed will help in field sample collection and chemical testing of different stormwater pollutants in build-up and wash-off.
Resumo:
Welcome to the Quality assessment matrix. This matrix is designed for highly qualified discipline experts to evaluate their course, major or unit in a systematic manner. The primary purpose of the Quality assessment matrix is to provide a tool that a group of academic staff at universities can collaboratively review the assessment within a course, major or unit annually. The annual review will result in you being read for an external curricula review at any point in time. This tool is designed for use in a workshop format with one, two or more academic staff, and will lead to an action plan for implementation.
Resumo:
Surface water and groundwater are the most important water sources in the natural environment. Land use and seasonal factors play an important role in influencing the quality of these water sources. An in-depth understanding of the role of these two influential factors can help to implement an effective catchment management strategy for the protection of these water sources. This paper discusses the outcomes of an extensive research study which investigated the role of land use and seasonal factors on surface water and groundwater pollution in a mixed land use coastal catchment. The study confirmed that the influence exerted on the water environment by seasonal factors is secondary to that of land use. Furthermore, the influence of land use and seasonal factors on surface water and groundwater quality varies with the pollutant species. This highlights the need to specifically take into consideration the targeted pollutants and the key influential factors for the effective protection of vulnerable receiving water environments.
Resumo:
Service bundles, in the context of e-government, are used to group services together that relate to a certain citizen need. These bundles can then be presented on a governmental one-stop portal to structure the available service offerings according to citizen expectations. In order to ensure that citizens utilise the one-stop portal and comprised service bundles for future transactions, the quality of these service bundles needs to be managed and maximised accordingly. Consequently, models and tools that focus on assessing service bundle quality play an important role, when it comes to increasing or retaining usage behaviour of citizens. This study focuses on providing a rigorous and structured literature review of e-government outlets with regards to their coverage of service bundle quality and e-service quality themes. The study contributes to academia and practice by providing a framework that allows structuring and classifying existing studies relevant for the assessment of quality for government portals. Furthermore, this study provides insights into the status quo of quality models that can be used by governments to assess the quality of their service bundles. Directions for future research and limitations of the present study are provided as well.
Resumo:
The Lake Wivenhoe Integrated Wireless Sensor Network is conceptually similar to traditional SCADA monitoring and control approaches. However, it is applied in an open system using wireless devices to monitor processes that affect water quality at both a high spatial and temporal frequency. This monitoring assists scientists to better understand drivers of key processes that influence water quality and provide the operators with an early warning system if below standard water enters the reservoir. Both of these aspects improve the safety and efficient delivery of drinking water to the end users.
Resumo:
This paper describes the experimental evaluation of a novel Autonomous Surface Vehicle capable of navigating complex inland water reservoirs and measuring a range of water quality properties and greenhouse gas emissions. The 16 ft long solar powered catamaran is capable of collecting water column profiles whilst in motion. It is also directly integrated with a reservoir scale floating sensor network to allow remote mission uploads, data download and adaptive sampling strategies. This paper describes the onboard vehicle navigation and control algorithms as well as obstacle avoidance strategies. Experimental results are shown demonstrating its ability to maintain track and avoid obstacles on a variety of large-scale missions and under differing weather conditions, as well as its ability to continuously collect various water quality parameters complimenting traditional manual monitoring campaigns.
Resumo:
This paper describes a novel Autonomous Surface Vehicle capable of navigating throughout complex inland water storages and measuring a range of water quality properties and greenhouse gas emissions. The 16 ft long solar powered catamaran can collect this information throughout the water column whilst the vehicle is moving. A unique feature of this ASV is its integration into a storage scale floating sensor network to allow remote mission uploads, data download and adaptive sampling strategies. This paper provides an overview of the vehicle design and operation including control, laser-based obstacle avoidance, and vision-based inspection capabilities. Experimental results are shown illustrating its ability to continuously collect key water quality parameters and compliment intensive manual monitoring campaigns.
Resumo:
This report describes results and conclusions from the monitoring component of the Douglas Shire Council (DSC) water quality project. The components of this project that this report addresses are: • Site selection and installation of in-stream and off-paddock automatic water quality monitoring equipment in the Douglas Shire. • Design of appropriate sampling strategies for automatic stations. • Estimation of loads of suspended sediment, total nitrogen and total phosphorus in rivers and also estimation of the changes in nutrient loads from sugar cane under different fertilizer application rates. • Development of a community-based water quality sampling program to complement the automatic sampling efforts. • Design of an optimised, long-term water quality monitoring strategy.