963 resultados para transformation-induced plasticity steel


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study, wedge-shape samples were used to study the effect of strain induced transformation on the formation of ultrafine grained structures in steel by single pass rolling. The results showed two different transition strains for bainite formation and ultrafine ferrite (UFF) formation in the surface layer of strip at reductions of 40% and 70%, respectively, in a plain carbon steel. The bainitic microstructure formed by strain induced bainitic transformation during single pass rolling was also very fine. The evolution of UFF formation in the surface layer showed that ferrite coarsening is significantly reduced through strain induced transformation combined with rapid cooling in comparison with the centre of the strip. In the surface, the ferrite coarsening mostly occurred for intragranular nucleated grains (IG) rather than grain boundary (GB) ferrite grains. The results suggest that normal grain growth occurred during overall transformation in the GB ferrite grains. In the centre of the strip, there was significantly more coarsening of ferrite grains nucleated on the prior austenite grain boundaries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An investigation into the production of ultrafine (1 µm) equiaxed ferrite (UFF) grains in low-carbon steel was made using laboratory rolling, compression dilatometry, and hot torsion techniques. It was found that the hot rolling of thin strip, with a combination of high shear strain and high undercooling, provided the conditions most suitable for the formation of this type of microstructure. Although high strains could be applied in compression and torsion experiments, large volume fractions of UFF were not observed in those samples, possibly due to the lower level of undercooling achieved. It is thought that ferrite refinement was due to a strain-induced transformation process, and that ferrite grains nucleated on parallel and linear deformation bands that traversed austenite grains. These bands formed during the deformation process, and the undercooling provided by the contact between the strip and the work rolls was sufficient to drive the transformation to homogeneous UFF grains.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The tribological behaviors and phase transformation of single crystal silicon against Si3N4, Ruby and steel were investigated in this study. It was found that the strong chemical action between silicon and Fe was the key factor to the tribological behavior of silicon as slid against steel. SEM and Raman spectroscopy indicated that phase transformation of single crystal silicon occurred during the running-in period at low sliding velocity as slid against Si3N4 and Ruby. and gave birth to single or a mixture phase of Si-III, Si-XII and amorphous silicon. The high hardness of counterpart and the absence of chemical action between silicon and counterpart facilitated the phase transformation of single crystal silicon. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

NiTi alloys have been widely used in the applications for micro-electro-mechanical-systems (MEMS), which often involve some precise and complex motion control. However, when using the NiTi alloys in MEMS application, the main problem to be considered is the degradation of functional property during cycling loading. This also stresses the importance of accurate prediction of the functional behavior of NiTi alloys. In the last two decades, a large number of constitutive models have been proposed to achieve the task. A portion of them focused on the deformation behavior of NiTi alloys under cyclic loading, which is a practical and non-negligible situation. Despite of the scale of modeling studies of the field in NiTi alloys, two experimental observations under uniaxial tension loading have not received proper attentions. First, a deviation from linearity well before the stress-induced martensitic transformation (SIMT) has not been modeled. Recent experiments confirmed that it is caused by the formation of stress-induced R phase. Second, the influence of the well-known localized Lüders-like SIMT on the macroscopic behavior of NiTi alloys, in particular the residual strain during cyclic loading, has not been addressed. In response, we develop a 1-D phenomenological constitutive model for NiTi alloys with two novel features: the formation of stress-induced R phase and the explicit modeling of the localized Lüders-like SIMT. The derived constitutive relations are simple and at the same time sufficient to describe the behavior of NiTi alloys. The accumulation of residual strain caused by R phase under different loading schemes is accurately described by the proposed model. Also, the residual strain caused by irreversible SIMT at different maximum loading strain under cyclic tension loading in individual samples can be explained by and fitted into a single equation in the proposed model. These results show that the proposed model successfully captures the behavior of R phase and the essence of localized SIMT.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Hot torsion testing of a C–Mn–V steel was used to study the evolution of  ultrafine ferrite (UFF) formation by dynamic strain-induced transformation (DSIT) in conjunction with air-cooling for two prior austenite grain sizes. This study evaluated not only the evolution of DSIT ferrite during straining, but also the grain growth behaviour of DSIT ferrite grains during post-deformation cooling. For both austenite grain sizes, the DSIT ferrite initially nucleated on/or near prior austenite grain boundaries at an early stage of transformation followed by the grain interiors. The prior austenite grain size affected the distribution of DSIT ferrite nucleation sites at an early stage of transformation and the subsequent coarsening behaviour of the grain boundary (GB) and the intragranular ferrite (IG) grains during post-deformation cooling. For the fine prior austenite grain size, the distribution of DSIT ferrite grains was more homogenous compared with the coarse austenite and the coarsening occurred not only in the GB ferrite grains but also in the IG ferrite grains. However, the ferrite coarsening mostly occurred for the IG ferrite rather than the GB ferrite grains in the coarse austenite. The result suggests that normal grain growth occurred during the overall transformation in the GB ferrite grains for the coarse initial austenite grain size.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The refinement of ferrite grain size is the most generally accepted approach to simultaneously improve the strength and toughness in steels. Historically, the level of ferrite refinement is limited to 5-10 μm using conventional industrial approaches. Nowadays, though, several thermomechanical processes have been developed to produce ferrite grain sizes of 1-3 μm or less, ranging from extreme thermal and deformation cycles to more typical thermomechanical processes. The present paper reviews the status of the production of ultrafine grained steels through relatively simple thermomechanical processing. This requires deformation within the Ae3 to Ar3 temperature range for a given alloy. Here, the formation of ultrafine ferrite (UFF) involves the dynamic transformation of a significant volume fraction of the austenite to ferrite. This dynamic strain induced transformation (DSIT) arises from the introduction of extensive intragranular nucleation sites that are not present in conventional controlled rolling. The DSIT route has the potential to be adjusted to suit current industrial infrastructure. However, there are a number of significant issues that have been raised, both as gaps in our understanding and as obstacles to industrial implementation. One of the critical issues is that it appears that very large strains are required. Combined with this concern is the issue of whether a combination of dynamic and static transformation can be used to achieve an adequate level of refinement. Another issue that has also become apparent is that grain sizes of 1 μm can lead to low levels of ductility and hence many workers are attempting to obtain 2-3 μm grains, or to introduce a second phase to provide the required ductility. There are also a number of areas of disagreement between authors including the role of dynamic recrystallisation of ferrite in the production of UFF by DSIT, the reasons for the low coarsening rate of UFF grains, the role of microalloying elements and the effects of austenite grain size and strain rate. The present review discusses these areas of controversy and highlights cases where experimental results do not agree.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this study, a novel experimental approach was applied to study the mechanism of the equiaxed shape retention in dynamic strain induced ferrite during deformation. The post-deformation ferrite evolution in both static and dynamic transformation was studied. The refinement potential and the origin of their differences in both mechanisms were analysed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The dynamic strain-induced transformation (DSIT) of austenite to ferrite was investigated under different undercooling conditions using three low carbon Si-Mn steels. The undercooling of austenite (ΔT) was controlled by varying the cooling rate between austenitization and deformation temperatures. Uniform DSIT ferrite grains (∼2.3 μm) were produced at a relatively high deformation temperature above 840°C using a low carbon high Si steel (0.077C-0.97Mn-1.35Si, mass%) in connection with a larger ΔT. The critical conditions for DSIT were determined based on the flow stress-strain curves measured during hot compression tests. Influence of deformation temperature on DSIT of low carbon Si-added steel was also discussed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The goal in the heat treatment or thermomechanical processing of steel is to improve the mechanical properties. For structural steel applications the general aim is to refine the ferrite grain size as this is the only method that improves both the strength and toughness simultaneously. For conventional hot rolling and accelerated cooling processes, it is difficult to refine the grain size below 5. μm without extensive alloying. However, it has been found that inducing transformation during deformation (i.e. dynamic transformation) can lead to grain sizes of the order of 1. μm, even in very simple steel compositions. The exact mechanism(s) for this transformation process are still being debated, and this has also been complicated by recent studies where such grain sizes can be obtained by static transformation from austenite that has been heavily deformed at low temperatures prior to the transformation. This chapter reviews the various major studies related in particular to dynamic transformation and considers the contributions from the deformed austenite structure developed prior to the transformation and the potential for dynamic recrystallisation of the ferrite. A key factor is proposed to be the early three-dimensional impingement of the ferrite which also provides an insight into cases where ultrafine grains are achieved statically.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This series of research vignettes is aimed at sharing current and interesting research findings from our team of international Entrepreneurship researchers. In this vignette, Dr Marcello Tonelli and Associate Professor Carol Dalglish consider the delivery of entrepreneurial education through experiential learning in a developing context.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The chemically reversible solid−solid phase transformation of a TCNQ-modified glassy carbon, indium tin oxide, or metal electrode into Co\[TCNQ]2(H2O)2 material in the presence of Co2+(aq) containing electrolytes has been induced and monitored electrochemically. Voltammetric data reveal that the TCNQ/Co\[TCNQ]2(H2O)2 interconversion process is independent of electrode material and identity of cobalt electrolyte anion. However, a marked dependence on electrolyte concentration, scan rate, and method of electrode modification (drop casting or mechanical attachment) is found. Cyclic voltammetric and double potential step chronoamperometric measurements confirm that formation of Co\[TCNQ]2(H2O)2 occurs through a rate-determining nucleation and growth process that initially involves incorporation of Co2+(aq) ions into the reduced TCNQ crystal lattice at the TCNQ|electrode|electrolyte interface. Similarly, the reverse (oxidation) process, which involves transformation of solid Co\[TCNQ]2(H2O)2 back to parent TCNQ crystals, also is controlled by nucleation−growth kinetics. The overall chemically reversible process that represents this transformation is described by the reaction:  2TCNQ0(s) + 2e- + Co2+(aq) + 2H2O \[Co(TCNQ)2(H2O)2](s). Ex situ SEM images illustrated that this reversible TCNQ/Co\[TCNQ]2(H2O)2 conversion process is accompanied by drastic size and morphology changes in the parent solid TCNQ. In addition, different sizes of needle-shaped nanorod/nanowire crystals of Co\[TCNQ]2(H2O)2 are formed depending on the method of surface immobilization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Application of 'advanced analysis' methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A research project has been conducted with the aim of developing concentrated plasticity methods suitable for practical advanced analysis of steel frame structures comprising non-compact sections. A primary objective was to produce a comprehensive range of new distributed plasticity analytical benchmark solutions for verification of the concentrated plasticity methods. A distributed plasticity model was developed using shell finite elements to explicitly account for the effects of gradual yielding and spread of plasticity, initial geometric imperfections, residual stresses and local buckling deformations. The model was verified by comparison with large-scale steel frame test results and a variety of existing analytical benchmark solutions. This paper presents a description of the distributed plasticity model and details of the verification study.