857 resultados para titanium implants
Resumo:
Titanium has proven its suitability as an implant material in surgery over many years. Excellent biocompatibility and corrosion resistance are outstanding features. Implant surfaces always causes concern and interest in scientific communities, due to its close relationship with the time required for osseointegration. Surface modification can be performed by several methods, being laser irradiation one of them. Titanium implants with two different surfaces were inserted in rabbits: Group I (G-I: machined surface, control group), and group II (G-II: laser irradiated, test group) being processed 30 and 60 days after surgery for histological analysis. Surface characterization was performed with SEM-EDS, contact angle measurement, and mean roughness (Ra) parameters. Surface analysis in the GII group showed a nanomorphology affected by melt and quick solidification zones following laser irradiation (SEM), as well as total wettability and Ra mean values significantly higher than in the G-I group. The laser treatment resulted in a homogenized, porous surface, with increased surface area and volume. Histological analysis of bone-implant contact linear extension (BIC) showed better results in G-II at 30 days (39.26 ± 18.23 and 68.41 ± 13.68 for G-I and G-II groups, respectively). Titanium implants modified by laser irradiation showed important features that may accelerate early osseointegration.
Resumo:
The purpose of this study was to evaluate the possibility to obtaining guided bone regeneration utilizing a nonporous PTFE barrier in the osseointegrated implants, protruding from the bone level of the rabbit tíbia. The histologic characteristics of the interface between titanium implants, one group titanium-plasma coated, another group with acid-treated surfaces and the regenerated bone were also studied Twenty Screw-Vent implants were placed in tibias of five rabbits, two at the right side and two at the left side, protruding 3 mm from the bone level, to create a horizontal bone defect. ln the experimental side, the implants and adjacent bone were protected with a nonporous PTFE barrier. Histologic analysis after three months showed that all implants were in direct contact with the bane. Histologic measurements showed an average gain in bone height of the 2.15 and 2.42 mm for the barrier group and 1.95 and 0.43 mm for the control defects, in the titanium plasma-spray and acid-treated implant surfaces, respectively. The results suggest that the placement of implants protruding 3 mm from crestal bone defects may result in vertical bone augmentation and the regenerated bone is able to osseointegrate implants. lt seems to be critical the use of the PTFE barrier when acid-treated surface implants are inserted
Resumo:
Although the search for the ideal bone substitute has been the focus of a large number of studies, autogenous bone is still the gold standard for the filling of defects caused by pathologies and traumas, and mainly, for alveolar ridge reconstruction, allowing the titanium implants installation. OBJECTIVES: The aim of this study was to evaluate the dynamics of autogenous bone graft incorporation process to surgically created defects in rat calvaria, using epifluorescence microscopy. MATERIAL AND METHODS: Five adult male rats weighing 200-300 g were used. The animals received two 5-mm-diameter bone defects bilaterally in each parietal bone with a trephine bur under general anesthesia. Two groups of defects were formed: a control group (n=5), in which the defects were filled with blood clot, and a graft group (n=5), in which the defects were filled with autogenous bone block, removed from the contralateral defect. The fluorochromes calcein and alizarin were applied at the 7th and 30th postoperative days, respectively. The animals were killed at 35 days. RESULTS: The mineralization process was more intense in the graft group (32.09%) and occurred mainly between 7 and 30 days, the period labeled by calcein (24.66%). CONCLUSIONS: The fluorochromes showed to be appropriate to label mineralization areas. The interfacial areas between fluorochrome labels are important sources of information about the bone regeneration dynamics.
Resumo:
Studies have reported that alcohol may lead to imbalance in bone formation and resorption, however, its effects on osseointegration of titanium implants continues to be an inconclusive subject. In this context, the aim of this study was to make a biomechanical evaluation of the effect of abusive alcohol consumption on the removal torque of osseointegrated titanium implants. Male Wistar rats (n=30) were divided into two experimental groups (15 each) receiving only water (Control) or 36% alcohol solution oral administration. Thirty days later, all animals were submitted to titanium implant (2.2 mm x 4 mm) placement in the right and left tibiae. The surgical alveoli were prepared with a 2 mm drill mounted in a counter-angle hand-piece (20:1 ratio, 35 Ncm torque at 1200 rpm) under abundant cooling. Five animals from each group were euthanized at 15, 30, and 60 days. Tibiae were submitted to reverse torque analysis. Data obtained were submitted to statistical analysis by the non-parametric Kruskal-Wallis and Dunn Tests (p < 0.05). Animals in the alcohol group presented lower removal torque values when compared with control group animals for all periods tested (p < 0.05). It can be concluded that abusive alcohol consumption can reduce the removal torque of titanium implants placed in rat tibiae, suggesting that alcohol may interfere in the osseointegration process of titanium implants.
Resumo:
Studies have reported that alcohol may lead to imbalance in bone formation and resorption, however, its effects on osseointegration of titanium implants continues to be an inconclusive subject. In this context, the aim of this study was to make a biomechanical evaluation of the effect of abusive alcohol consumption on the removal torque of osseointegrated titanium implants. Male Wistar rats (n=30) were divided into two experimental groups (15 each) receiving only water (Control) or 36% alcohol solution oral administration. Thirty days later, all animals were submitted to titanium implant (2.2 mm x 4 mm) placement in the right and left tibiae. The surgical alveoli were prepared with a 2 mm drill mounted in a counter-angle hand-piece (20:1 ratio, 35 Ncm torque at 1200 rpm) under abundant cooling. Five animals from each group were euthanized at 15, 30, and 60 days. Tibiae were submitted to reverse torque analysis. Data obtained were submitted to statistical analysis by the non-parametric Kruskal-Wallis and Dunn Tests (p < 0.05). Animals in the alcohol group presented lower removal torque values when compared with control group animals for all periods tested (p < 0.05). It can be concluded that abusive alcohol consumption can reduce the removal torque of titanium implants placed in rat tibiae, suggesting that alcohol may interfere in the osseointegration process of titanium implants.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Purpose: This prospective randomized matched-pair controlled trial aimed to evaluate marginal bone levels and soft tissue alterations at implants restored according to the platform-switching concept with a new inward-inclined platform and compare them with external-hexagon implants. Materials and Methods: Traditional external-hexagon (control group) implants and inward-inclined platform implants (test group), all with the same implant body geometry and 13 mm in length, were inserted in a standardized manner in the posterior maxillae of 40 patients. Radiographic bone levels were measured by two independent examiners after 6, 12, and 18 months of prosthetic loading. Buccal soft tissue height was measured at the time of abutment connection and 18 months later. Results: After 18 months of loading, all 80 implants were clinically osseointegrated in the 40 participating patients. Radiographic evaluation showed mean bone losses of 0.5 +/- 0.1 mm (range, 0.3 to 0.7 mm) and 1.6 +/- 0.3 mm (range, 1.1 to 2.2 mm) for test and control implants, respectively. Soft tissue height showed a significant mean decrease of 2.4 mm in the control group, compared to 0.6 mm around the test implants. Conclusions: After 18 months, significantly greater bone loss was observed at implants restored according to the conventional external-hexagon protocol compared to the platform-switching concept. In addition, decreased soft tissue height was associated with the external-hexagon implants versus the platform-switched implants. INT J ORAL MAXILLOFAC IMPLANTS 2012;27:927-934.
Resumo:
Recent studies in animals have shown pronounced resorption of the buccal bone plate after immediate implantation. The use of flapless surgical procedures prior to the installation of immediate implants, as well as the use of synthetic bone graft in the gaps represent viable alternatives to minimize buccal bone resorption and to favor osseointegration. The aim of this study was to evaluate the healing of the buccal bone plate following immediate implantation using the flapless approach, and to compare this process with sites in which a synthetic bone graft was or was not inserted into the gap between the implant and the buccal bone plate. Lower bicuspids from 8 dogs were bilaterally extracted without the use of flaps, and 4 implants were installed in the alveoli in each side of the mandible and were positioned 2.0 mm from the buccal bone plate (gap). Four groups were devised: 2.0-mm subcrestal implants (3.3 x 8 mm) using bone grafts (SCTG), 2.0-mm subcrestal implants without bone grafts (SCCG), equicrestal implants (3.3 x 10 mm) with bone grafts (EGG), and equicrestal implants without bone grafts (ECCG). One week following the surgical procedures, metallic prostheses were installed, and within 12 weeks the dogs were sacrificed. The blocks containing the individual implants were turned sideways, and radiographic imaging was obtained to analyze the remodeling of the buccal bone plate. In the analysis of the resulting distance between the implant shoulder and the bone crest, statistically significant differences were found in the SCTG when compared to the ECTG (P = .02) and ECCG (P = .03). For mean value comparison of the resulting linear distance between the implant surface and the buccal plate, no statistically significant difference was found among all groups (P > .05). The same result was observed in the parameter for presence or absence of tissue formation between the implant surface and buccal plate. Equicrestally placed implants, in this methodology, presented little or no loss of the buccal bone. The subcrestally positioned implants presented loss of buccal bone, even though synthetic bone graft was used. The buccal bone, however, was always coronal to the implant shoulder.
Resumo:
Objectives: To investigate the effect of Si addition on a nanometer-scale roughness Ca and P implant surfaces in a canine tibia model by biomechanical and histomorphometric evaluations. Material and methods: The implant surfaces comprised a resorbable media CaP microblasted (control) and a CaP resorbable media + silica-boost microblasted (experimental) surfaces. Surfaces were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and optical interferometry (IFM) down to the nanometric level. The animal model involved the bilateral placement of control (n = 24) and experimental surface (n = 24) implants along the proximal tibiae of six dogs, remaining in vivo for 2 or 4 weeks. After euthanization, half of the specimens were torquedto- interface failure, and the other half was subjected to histomorphologic and bone-to-implant contact (BIC) evaluation. Torque and BIC statistical evaluation was performed by the Friedman test at 95% level of significance, and comparisons between groups was performed by the Dunn test. Results: IFM and SEM observations depicted comparable roughness parameters for both implant surfaces on the micrometer and nanometer scales. XPS analysis revealed similar chemical composition, except for the addition of Si on the experimental group. Torque-to-interface failure and BIC mean values showed no significant differences (P = 0.25 and 0.51, respectively) at both 2- and 4-week evaluation points for experimental and control groups. Early bone healing histomorphologic events were similar between groups. Conclusions: The experimental surface resulted in not significantly different biomechanical fixation and BIC relative to control. Both surfaces were biocompatible and osseoconductive.
Resumo:
Objective Several implant surfaces are being developed, some in the nanoscale level. In this study, two different surfaces had their early healing properties compared in context of circumferential defects of various widths. Material and methods Six dogs had the mandibular premolars extracted. After 8weeks, four implants were placed equicrestally in each side. One acted as control, while the others were inserted into sites with circumferential defects of 1.0, 1.5 and 2.0mm wide and 5mm deep. A nano-modified surface was used on one side and a micro-rough on the other. Bone markers were administered on the third day after implant placement and then after 1, 2, 4weeks to investigate the bone formation dynamic through fluorescence analysis. Ground sections were prepared from 8-week healing biopsies and histomorphometry was performed. Results The fluorescence evaluation of the early healing showed numerically better results for the nano-modified group; however this trend was not followed by the histomorphometric evaluation. A non-significant numerical superiority of the micro-rough group was observed in terms of vertical bone apposition, defect bone fill, bone-to-implant contact and bone density. In the intra-group analysis, the wider defects showed the worse results while the control sites showed the best results for the different parameters, but without statistical relevance. Conclusion Both surfaces may lead to complete fill of circumferential defects, but the gap width has to be considered as a challenge. The nano-scale modification was beneficial in the early stages of bone healing, but the micro-rough surface showed numerical better outcomes at the 8-week final period.
Resumo:
Objectives: This study compared the biomechanical fixation and bone-to-implant contact (BIC) of implants with different surfaces treatment (experimental resorbable blasting media-processed nanometer roughness scale surface, and control dual acid-etched) in a dog model. Material and methods: Surface characterization was made in six implants by means of scanning electron microscopic imaging, atomic force microscopy to evaluate roughness parameters, and X-ray photoelectron spectroscopy (XPS) for chemical assessment. The animal model comprised the bilateral placement of control (n = 24) and experimental surface (n = 24) implants along the proximal tibiae of six mongrel dogs, which remained in place for 2 or 4 weeks. Half of the specimens were biomechanically tested (torque), and the other half was subjected to histomorphologic/ morphometric evaluation. BIC and resistance to failure measures were each evaluated as a function of time and surface treatment in a mixed model ANOVA. Results: Surface texturing was significantly higher for the experimental compared with the control surface. The survey XPS spectra detected O, C, Al, and Ti at the control group, and Ca (similar to 0.2-0.9%) and P (similar to 1.7-4.1%) besides O, C, Al, and Ti at experimental surfaces. While no statistical difference in BIC was found between experimental and control surfaces or between 2 and 4 weeks in vivo, both longer time and use of experimental surface significantly increased resistance to failure. Conclusions: The experimental surface resulted in enhanced biomechanical fixation but comparable BIC relative to control, suggesting higher bone mechanical properties around the experimental implants.
Resumo:
Objectives: To compare the biomechanical fixation and histomorphometric parameters between two implant surfaces: non-washed resorbable blasting media (NWRBM) and alumina-blasted/acid-etched (AB/AE), in a dog model. Material and methods: The surface topography was assessed by scanning electron microscopy, optical interferometry and chemistry by X-ray photoelectron spectroscopy (XPS). Six beagle dogs of similar to 1.5 years of age were utilized and each animal received one implant of each surface per limb (distal radii sites). After a healing period of 3 weeks, the animals were euthanized and half of the implants were biomechanically tested (removal torque) and the other half was referred to nondecalcified histology processing. Histomorphometric analysis considered bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO). Following data normality check with the Kolmogorov-Smirnov test, statistical analysis was performed by paired t-tests at 95% level of significance. Results: Surface roughness parameters Sa (average surface roughness) and Sq (mean root square of the surface) were significantly lower for the NWRBM compared with AB/ AE. The XPS spectra revealed the presence of Ca and P in the NWRBM. While no significant differences were observed for both BIC and BAFO parameters (P>0.35 and P>0.11, respectively), a significantly higher level of torque was observed for the NWRBM group (P = 0.01). Bone morphology was similar between groups, which presented newly formed woven bone in proximity with the implant surfaces. Conclusion: A significant increase in early biomechanical fixation was observed for implants presenting the NWRBM surface.
Resumo:
Background: In sites with diminished bone volume, the osseointegration of dental implants can be compromised. Innovative biomaterials have been developed to aid successful osseointegration outcomes. Purpose: The aim of this study was to evaluate the osteogenic potential of angiogenic latex proteins for improved bone formation and osseointegration of dental implants. Materials and Methods: Ten dogs were submitted to bilateral circumferential defects (5.0 x 6.3 mm) in the mandible. Dental implant (3.3 x 10.0 mm, TiUnite MK3 (TM), Nobel Biocare AB, Goteborg, Sweden) was installed in the center of the defects. The gap was filled either with coagulum (Cg), autogenous bone graft (BG), or latex angiogenic proteins pool (LPP). Five animals were sacrificed after 4 weeks and 12 weeks, respectively. Implant stability was evaluated using resonance frequency analysis (Osstell Mentor T, Osstell AB, Goteborg, Sweden), and bone formation was analyzed by histological and histometric analysis. Results: LPP showed bone regeneration similar to BG and Cg at 4 weeks and 12 weeks, respectively (p >= 3.05). Bone formation, osseointegration, and implant stability improved significantly from 4 to 12 weeks (p <= 2.05). Conclusion: Based on methodological limitations of this study, Cg alone delivers higher bone formation in the defect as compared with BG at 12 weeks; compared with Cg and BG, the treatment with LPP exhibits no advantage in terms of osteogenic potential in this experimental model, although overall osseointegration was not affected by the treatments employed in this study.
Resumo:
It has been a matter of debate as to whether dental implant therapies are suitable for patients subjected to long-term use of bisphosphonates (BPs). This report presents a case of a 76-year-old woman who developed BPs-related osteonecrosis of the jaw (BRONJ) in the left hemimandible after dental implant exposure. The implants and the necrotic crestal bone were removed, and postoperatively, a delay in tissue healing with bone exposure was noticed. The histologic analysis of the block biopsies revealed a lamellar bone tissue exhibiting necrotic areas and bacterial colonies associated with the bone outer surface. The bone-implant interface showed viable lamellar bone with enlarged vascular spaces in the areas between the implant threads. The possible mechanisms for the loss of implants in BRONJ patients are discussed, and the potential protocols for dental implant rehabilitation for patients under BP therapies are presented. (Implant Dent 2012;21:449-453)
Resumo:
OBJECTIVES: To compare the gene expression profile of osseointegration associated with a moderately rough and a chemically modified hydrophilic moderately rough surface in a human model. MATERIAL AND METHODS: Eighteen solid screw-type cylindrical titanium implants, 4 mm long and 2.8 mm wide, with either a moderately rough (SLA) or a chemically modified moderately rough (SLActive) surface were surgically inserted in the retromolar area of nine human volunteers. The devices were removed using a trephine following 4, 7 and 14 days of healing. The tissue surrounding the implant was harvested, total RNA was extracted and microarray analysis was carried out to identify the differences in the transcriptome between the SLA and SLActive surfaces at days 4, 7 and 14. RESULTS: There were no functionally relevant gene ontology categories that were over-represented in the list of genes that were differentially expressed at day 4. However, by day 7, osteogenesis- and angiogenesis-associated gene expression were up-regulated on the SLActive surface. Osteogenesis and angiogenesis appeared to be regulated by BMP and VEGF signalling, respectively. By day 14, VEGF signalling remains up-regulated on the SLActive surface, while BMP signalling was up-regulated on the SLA surface in what appeared to be a delayed compensatory response. Furthermore, neurogenesis was a prominent biological process within the list of differentially expressed genes, and it was influenced by both surfaces. CONCLUSIONS: Compared with SLA, SLActive exerts a pro-osteogenic and pro-angiogenic influence on gene expression at day 7 following implant insertion, which may be responsible for the superior osseointegrative properties of this surface.