922 resultados para thiol-based redox regulation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

An emerging concept is that disulfide bonds can act as a dynamic scaffold to present mature proteins in different conformational and functional states on the cell surface. Two examples are the conversion of the receptor, integrin a alpha(IIb)beta(3), from a low affinity to a high affinity state, and the interaction of CD4 receptor with the HIV-1 envelope glycoprotein gp120 to promote virus-cell fusion. In both of these cases there is a remodeling of the protein disulfide bonding pattern. The formation and rearrangement of disulfide bonds is modulated by a family of enzymes known as the thiol isomerases, which include protein disulfide isomerase (PDI), ERp5, ERp57, and ERp72. While these enzymes were reported originally to be restricted in location to the endoplasmic reticulum, in some cells thiol isomerases are found on the cell surface. This may indicate a wider role for these enzymes in cell function. In platelets it has been shown that reagents that react with cell surface sulfhydryl groups are capable of blocking a number of functional responses, including integrin-mediated aggregation, adhesion, and granule secretion. Furthermore, the use of function blocking antibodies to either PDI or ERp5 causes inhibition of these functional responses. This review summarizes current knowledge of the extracellular regulation of disulfide exchange and the implications of this in the regulation of cell function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Organisms generally respond to iron deficiency by increasing their capacity to take up iron and by consuming intracellular iron stores. Escherichia coli, in which iron metabolism is particularly well understood, contains at least 7 iron-acquisition systems encoded by 35 iron-repressed genes. This Fe-dependent repression is mediated by a transcriptional repressor, Fur ( ferric uptake regulation), which also controls genes involved in other processes such as iron storage, the Tricarboxylic Acid Cycle, pathogenicity, and redox-stress resistance. Our macroarray-based global analysis of iron- and Fur-dependent gene expression in E. coli has revealed several novel Fur-repressed genes likely to specify at least three additional iron- transport pathways. Interestingly, a large group of energy metabolism genes was found to be iron and Fur induced. Many of these genes encode iron- rich respiratory complexes. This iron- and Fur-dependent regulation appears to represent a novel iron-homeostatic mechanism whereby the synthesis of many iron- containing proteins is repressed under iron- restricted conditions. This mechanism thus accounts for the low iron contents of fur mutants and explains how E. coli can modulate its iron requirements. Analysis of Fe-55-labeled E. coli proteins revealed a marked decrease in iron- protein composition for the fur mutant, and visible and EPR spectroscopy showed major reductions in cytochrome b and d levels, and in iron- sulfur cluster contents for the chelator-treated wild-type and/or fur mutant, correlating well with the array and quantitative RT-PCR data. In combination, the results provide compelling evidence for the regulation of intracellular iron consumption by the Fe2+-Fur complex.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The syntheses and spectroscopic characterization of two 1,2,4-triazole-based oxovanadium(V) complexes are reported: 1(-)[VO(2)L1](-) and 2 [(VOL2)(2)(OMe)(2)] (where H(2)L1 = 3-(2'-hydroxyphenyl)-5-(pyridin-2"-yl)-H-1-1,2,4-triazole, H3L2 = bis-3,5-(2'-hydroxyphenyl)-1H-1,2,4-triazole). The ligand environment (N,N,O vs O,N,O) is found to have a profound influence on the properties and reactivity of the complexes formed. The presence of the triazolato ligand allows for pH tuning of the spectroscopic and electrochemical properties, as well as the interaction and stability of the complexes in the presence of hydrogen peroxide. The vanadium(IV) oxidation states were generated electrochemically and characterized by UV-vis and EPR spectroscopies, For 2, under acidic conditions, rapid exchange of the methoxide ligands with solvent [in particular, in the vanadium(IV) redox state] was observed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The lithium salt of the anionic SPS pincer ligand composed of a central hypervalent lambda(4)-phosphinine ring bearing two ortho-positioned diphenylphosphine sulfide side arms reacts with [Mn(CO)(5)Br] to give fac-[Mn(SPS)(CO)(3)], This isomer can be converted photochemicaily to mer-[Mn(SPS)(CO)(3)], with a very high quantum yield (0.80 +/- 0.05). The thermal backreaction is slow (taking ca. 8 h at room temperature), in contrast to rapid electrodecatalyzed mer-to-fac isomerization triggered by electrochemical reduction of mer-[Mn(SPS)(CO)(3)]. Both geometric isomers of [Mn(SPS)(CO)(3)] have been characterized by X-ray crystallography. Both isomers show luminescence from a low-lying (IL)-I-3 (SPS-based) excited state. The light emission of fac-[Mn(SPS)(CO)(3)] is largely quenched by the efficient photoisomerization occurring probably from a low-lying Mn-CO dissociative excited state. Density functional theory (DFT) and time-dependent DFT calculations describe the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of fac- and mer-[Mn(CO)(3)(SPS)] as ligand-centered orbitals, largely localized on the phosphinine ring of the SPS pincer ligand. In line with the ligand nature of its frontier orbitals, fac-[Mn(SPS)(CO)(3)] is electrochemically reversibly oxidized and reduced to the corresponding radical cation and anion, respectively. The spectroscopic (electron paramagnetic resonance, IR, and UV-vis) characterization of the radical species provides other evidence for the localization of the redox steps on the SIPS ligand. The smaller HOMO-LUMO energy difference in the case of mer-[Mn(CO)(3)(SPS)], reflected in the electronic absorption and emission spectra, corresponds with its lower oxidation potential compared to that of the fac isomer. The thermodynamic instability of mer-[Mn(CO)(3)(SPS)], confirmed by the DFT calculations, increases upon one-electron reduction and oxidation of the complex.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

IR, UV-vis, and EPR spectroelectrochemistry at variable temperatures and in different solvents were applied to investigate in situ the formation of electroactive molecular chains with a nonbridged Os-Os backbone, in particular, the polymer [Os-0(bpy)(CO)(2)](n), (bpy = 2,2'-bipyridine), from a mononuclear Os(II) carbonyl precursor, [Os-II(bpy)(CO)(2)Cl-2]. The one-electron-reduced form, [Os-II(bpy(.-))(CO)(2)Cl-2](-), has been characterized spectroscopically at low temperatures. This radical anion is the key intermediate in the electrochemical propagation process responsible for the metal-metal bond formation. Unambiguous spectroscopic evidence has been gained also for the formation of [{Os-0(bpy(.-))(CO)(2)}(-)](n), the electron-rich electrocatalyst of CO2 reduction. The polymer species are fairly well soluble in butyronitrile, which is important for their potential utilization in nanoscience, for example, as conducting molecular wires. We have also shown that complete solubility is accomplished for the monocarbonyl-acetonitrile derivative of the polymer, [Os-0(bpy)(CO)(MeCN)(2)Cl](n).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have evaluated the molecular responses of human epithelial cells to low dose arsenic to ascertain how target cells may respond to physiologically relevant concentrations of arsenic. Data gathered in numerous experiments in different cell types all point to the same conclusion: low dose arsenic induces what appears to be a protective response against subsequent exposure to oxidative stress or DNA damage, whereas higher doses often provoke synergistic toxicity. In particular, exposure to low, sub-toxic doses of arsenite, As(III), causes coordinate up-regulation of multiple redox and redox-related genes including thioredoxin (Trx) and glutathione reductase (GR). Glutathione peroxidase (GPx) is down-regulated in fibroblasts, but up-regulated in keratinocytes, as is glutathione S-transferase (GST). The maximum effect on these redox genes occurs after 24 h exposure to 5–10 mM As(III). This is 10-fold higher than the maximum As(III) concentrations required for induction of DNA repair genes, but within the dose region where DNA repair genes are co-ordinately down-regulated. These changes in gene regulation are brought about in part by changes in DNA binding activity of the transcription factors activating protein-1 (AP-1), nuclear factor kappa-B, and cAMP response element binding protein (CREB). Although sub-acute exposure to micromolar As(III) up-regulates transcription factor binding, chronic exposure to submicromolar As(III) causes persistent down-regulation of this response. Similar long-term exposure to micromolar concentrations of arsenate in drinking water results in a decrease in skin tumour formation in dimethylbenzanthracene (DMBA)/phorbol 12-tetradecanoate 13-acetate (TPA) treated mice. Altered response patterns after long exposure to As(III) may play a significant role in As(III) toxicology in ways that may not be predicted by experimental protocols using short-term exposures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Judging time-to-contact with a target is an important criterion for avoiding harm in everyday walking and running tasks, and maximizing performance in high-velocity sporting tasks. The information-based regulation of step length and duration during target-directed locomotion was examined in relation to gait mode, approach velocity, target task, expertise, and sporting performance during a series of four experiments. The first three experiments examined novice performers (Each n=12, 6 males, 6 females), whilst the last experiment examined expert gymnasts (n=5). Two reference strips with alternating 50cm black and white intervals were placed on either side of the approach strip for all of the experiments. One 50Hz-panning video camera filmed the approach from an elevated position. In Experiment 4, two stationary 250Hz cameras filmed the post-flight performance of the gymnastic vaults and, in addition, two qualified judges provided a performance score for each vaulting trial. The panning video footage in each experiment was digitized to deduce the gait characteristics. In Experiment 4, the high-speed video footage was analyzed three-dimensionally to obtain the performance measures such as post-flight height. The utilization of visual stimulus in target-directed locomotion is affected by the observer's state of motion as characterized by the mode of locomotion and also often the speed of locomotion. In addition, experience plays an important role in the capacity of the observer to utilize visual stimulus to control the muscular action of locomotion when either maintaining or adjusting the step mechanics. The characteristics of the terrain and the target also affect the observer's movement. Visual regulation of step length decreases at higher approach speeds in novice performers, where as expert performers are capable of increasing visual regulation at higher approach speeds. Conservatism in final foot placement by female participants accounts for the observed increase in distance from the critical boundary of the obstacle relative to toe placement. Behavioural effects of gender thus affect the control of final foot placement in obstacle-directed locomotion. The visual control of braking in target-directed locomotion is described by a tau-dot of-0.54. When tau-dot is below -0.54 a hard collision with the obstacle will occur, however, when tau-dot is above -0.54, a soft collision with the target will occur. It is suggested that the tau-dot margin defining the control of braking reveals the braking capacity of the system. In the target-directed locomotion examined a tau-dot greater than -0.70 would possibly exceed the braking capacity of the system, thus, leading to injury if performed. The approach towards the take-off board and vaulting horse in gymnastics is an example of target-directed locomotion in sport. Increased visual regulation of the timing and length of each step is a requirement for a fast running approach, a fundamental building block for the execution of complex vaults in gymnastics. The successful performance of complex vaults in gymnastics leads towards a higher judge's score. Future research suggestions include an investigation of visual regulation of step length in curved target-directed locomotion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conducting polymer based electrochromic devices were assembled with various ionic liquid (IL) based electrolytes to probe the role of the ion structure on electrochromic performance. When the IL contained the same anion as the dopant ion used in the conducting polymers an enhanced electrochromic performance was observed providing high photopic contrast at low applied potential.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Given the rising rates of obesity in children and adolescents, developing evidence-based weight loss or weight maintenance interventions that can be widely disseminated, well implemented, and are highly scalable is a public health necessity. Such interventions should ensure that adolescents establish healthy weight regulation practices while also reducing eating disorder risk.

Objective:
This study describes an online program, StayingFit, which has two tracks for universal and targeted delivery and was designed to enhance healthy living skills, encourage healthy weight regulation, and improve weight/shape concerns among high school adolescents.

Methods:
Ninth grade students in two high schools in the San Francisco Bay area and in St Louis were invited to participate. Students who were overweight (body mass index [BMI] >85th percentile) were offered the weight management track of StayingFit; students who were normal weight were offered the healthy habits track. The 12-session program included a monitored discussion group and interactive self-monitoring logs. Measures completed pre- and post-intervention included self-report height and weight, used to calculate BMI percentile for age and sex and standardized BMI (zBMI), Youth Risk Behavior Survey (YRBS) nutrition data, the Weight Concerns Scale, and the Center for Epidemiological Studies Depression Scale.

Results: A total of 336 students provided informed consent and were included in the analyses. The racial breakdown of the sample was as follows: 46.7% (157/336) multiracial/other, 31.0% (104/336) Caucasian, 16.7% (56/336) African American, and 5.7% (19/336) did not specify; 43.5% (146/336) of students identified as Hispanic/Latino. BMI percentile and zBMI significantly decreased among students in the weight management track. BMI percentile and zBMI did not significantly change among students in the healthy habits track, demonstrating that these students maintained their weight. Weight/shape concerns significantly decreased among participants in both tracks who had elevated weight/shape concerns at baseline. Fruit and vegetable consumption increased for both tracks. Physical activity increased among participants in the weight management track, while soda consumption and television time decreased.

Conclusions: Results suggest that an Internet-based, universally delivered, targeted intervention may support healthy weight regulation, improve weight/shape concerns among participants with eating disorders risk, and increase physical activity in high school students. Tailored content and interactive features to encourage behavior change may lead to sustainable improvements in adolescent health.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A montmorillonite from Wyoming-USA was used to prepare an organo-clay complex, named 2-thiazoline-2-thiol-hexadecyltrimethylammonium-clay (TZT-HDTA-clay), for the purpose of the selective adsorption of the heavy metals ions and possible use as a chemically modified carbon paste electrode (CMCPE). Adsorption isotherms of Hg 2+, Pb 2+, Cd 2+, Cu 2+, and Zn 2+ from aqueous solutions as a function of the pH were studied at 298 K. Conditions for quantitative retention and elution were established for each metal by batch and column methods. The organo-clay complex was very selective to Hg(II) in aqueous solution in which other metals and ions were also present. The accumulation voltammetry of Hg(II) was studied at a carbon paste electrode chemically modified with this material. The mercury response was evaluated with respect to the pH, electrode composition, preconcentration time, mercury concentration, cleaning solution, possible interferences and other variables. A carbon paste electrode modified by TZT-HDTA-clay showed two peaks: one cathodic peak at about 0.0 V and an anodic peak at 0.25 V, scanning the potential from -0.2 to 0.8 V (0.05 M KNO 3 vs. Ag/AgCl). The anodic peak at 0.25 V presents excellent selectivity for Hg(II) ions in the presence of foreign ions. The detection limit was estimated as 0.1 μg L -1. The precision of determination was satisfactory for the respective concentration level. 2005 © The Japan Society for Analytical Chemistry.