938 resultados para sweet potato viruses
Resumo:
Detailed information on probing behavior of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is critical for understanding the transmission process of phloem-limited bacteria (Candidatus Liberibacter spp.) associated with citrus `huanglongbing` by this vector. In this study, we investigated stylet penetration activities of D. citri on seedlings of Citrus sinensis (L.) Osbeck cv. Pera (Rutaceae) by using the electrical penetration graph (EPG-DC system) technique. EPG waveforms were described based on amplitude, frequency, voltage level, and electrical origin of the observed traces during stylet penetration into plant tissues. The main waveforms were correlated with histological observations of salivary sheath termini in plant tissues, to determine the putative location of stylet tips. The behavioral activities were also inferred based on waveform similarities in relation to other Sternorrhyncha, particularly aphids and whiteflies. In addition, we correlated the occurrence of specific waveforms with the acquisition of the phloem-limited bacterium Ca. Liberibacter asiaticus by D. citri. The occurrence of a G-like xylem sap ingestion waveform in starved and unstarved psyllids was also compared. By analyzing 8-h EPGs of adult females, five waveforms were described: (C) salivary sheath secretion and other stylet pathway activities; (D) first contact with phloem (distinct from other waveforms reported for Sternorrhyncha); (E1) putative salivation in phloem sieve tubes; (E2) phloem sap ingestion; and (G) probably xylem sap ingestion. Diaphorina citri initiates a probe with stylet pathway through epidermis and parenchyma (C). Interestingly, no potential drops were observed during the stylet pathway phase, as are usually recorded in aphids and other Sternorrhyncha. Once in C, D. citri shows a higher propensity to return to non-probing than to start a phloem or xylem phase. Several probes are usually observed before the phloem phase; waveform D is observed upon phloem contact, always immediately followed by E1. After E1, D. citri either returns to pathway activity (C) or starts phloem sap ingestion, which was the longest activity observed.
Resumo:
This study tests the hypothesis that potted sweet orange plants show a significant variation in photosynthesis over seasonal and diurnal cycles. even in well-hydrated conditions. This hypothesis was tested by measuring diurnal variations in leaf gas exchange, chlorophyll fluorescence, leaf water potential, and the responses of CO(2) assimilation to increasing air CO(2) concentrations in 1-year-old `Valencia` sweet orange scions grafted onto `Cleopatra` mandarin rootstocks during the winter and summer seasons in a subtropical climate. In addition, diurnal leaf gas exchange was evaluated under controlled conditions, with constant environmental conditions during both winter and summer. In relation to our hypothesis, a greater rate of photosynthesis is found during the summer compared to the winter. Reduced photosynthesis during winter was induced by cool night conditions, as the diurnal fluctuation of environmental conditions was not limiting. Low air and soil temperatures caused decreases in the stomatal conductance and in the rates of the biochemical reactions underlying photosynthesis (ribulose-1,5-bisphosphate (RuBP) carboxylation and RuBP regeneration) during the winter compared to the values obtained for those markers in the Summer. Citrus photosynthesis during the summer was riot impaired by biochemical or photochemical reactions. as CO(2) assimilation was only limited by stomatal conductance due to high leaf-to-air vapor pressure difference (VPD) during the afternoon. During the winter, the reduction in photosynthesis during the afternoon Was Caused by decreases in RuBP regeneration and stomatal conductance, which are both precipitated by low night temperature. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
We have characterized potato (Solanum tuberosum L.) plants expressing a soybean leghemoglobin that is targeted to plastids. Transgenic plants displayed a dwarf phenotype caused by short internode length, and exhibited increased tuberization in vitro. Under in vivo conditions that do not promote tuberization, plants showed smaller parenchymal cells than control plants. Analysis of gibberellin (GA) concentrations indicated that the transgenic plants have a substantial reduction (approximately 10-fold) of bioactive GA(1) concentration in shoots. Application of GA(3) to the shoot apex of the transformed plants completely restored the wild type phenotype suggesting that GA-biosynthesis rather than signal transduction was limiting. Since the first stage of the GA-biosynthetic pathway is located in the plastid, these results suggest that an early step in the pathway may be affected by the presence of the leghemoglobin.
Resumo:
In greenhouse potato cultivation, mineral nutrition is one of the main factors contributing to high yields and better product quality. Knowledge about the amount of nutrients accumulated in the plants at each growing phase provides important information that helps the establishment of a more balanced fertilizer application. The objective of this research was to determine the time course of macronutrients uptake and accumulation in potato plants for seed-tuber production, grown in nutrient solution. The experiment was carried out in a greenhouse, using in vitro material from the pre-basic category of the `Atlantic` variety. The plants were collected weekly from 14 days after transplanting (DAT) until 70 DAT The experimental design was a completely randomized block with 9 treatments to sampling times and four replicates. The highest nutrient requirement in the plant shoot occurred at the periods between 28 and 56 DAT while in the tubers it was after 49 DAT The maximum accumulation sequence of macronutrients was K > N > S > Ca > P > Mg.
Resumo:
Citrus huanglongbing (HLB) reduces an affected orchard`s economic life. This work aimed to characterize yield loss due to HLB for different sweet orange cultivars and determine the relationship between disease severity and yield. Disease severity and yield were assessed on 949 individual trees distributed in 11 different blocks from sweet orange cultivars Hamlin, Westin, Pera and Valencia. In each block, plants showing a range of HLB severity levels and asymptomatic plants were selected. Total yield (weight of harvested fruit), mean weight of asymptomatic and symptomatic fruit, relative yield (symptomatic tree yield/mean yield of asymptomatic trees from the same block) and relative number of fruits (fruit number from symptomatic tree/mean number of fruits from asymptomatic trees from the same block) were determined. The weight of symptomatic fruit was lower than the weight of asymptomatic fruit, but the weights of asymptomatic and symptomatic fruit were not correlated with disease severity, indicating that the effects of HLB were restricted to symptomatic branches. The relationship of the relative yield with HLB severity can be satisfactorily described by a negative exponential model. The rates of yield decrease as a function of disease severity were similar for all assessed cultivars. A relative yield (up to 19%) was observed even for trees where disease severity was 100%. The strong linear relationship between relative number of fruits per tree and the relative yield per tree suggested that the yield reduction was due primarily to early fruit drop or lack of fruit set on affected branches.
Resumo:
Endophytes are microorganisms that colonize plant tissues internally without causing harm to the host. Despite the increasing number of studies on sweet orange pathogens and endophytes, yeast has not been described as a sweet orange endophyte. In the present study, endophytic yeasts were isolated from sweet orange plants and identified by sequencing of internal transcribed spacer (ITS) rRNA. Plants sampled from four different sites in the state of Sao Paulo, Brazil exhibited different levels of CVC (citrus variegated chlorosis) development. Three citrus endophytic yeasts (CEYs), chosen as representative examples of the isolates observed, were identified as Rhodotorula mucilaginosa, Pichia guilliermondii and Cryptococcus flavescens. These strains were inoculated into axenic Citrus sinensis seedlings. After 45 days, endophytes were reisolated in populations ranging from 10(6) to 10(9) CFU/g of plant tissue, but, in spite of the high concentrations of yeast cells, no disease symptoms were observed. Colonized plant material was examined by scanning electron microscopy (SEM), and yeast cells were found mainly in the stomata and xylem of plants, reinforcing their endophytic nature. P. guilliermondii was isolated primarily from plants colonized by the causal agent of CVC, Xylella fastidiosa. The supernatant from a culture of P. guilliermondii increased the in vitro growth of X. fastidiosa, suggesting that the yeast could assist in the establishment of this pathogen in its host plant and, therefore, contribute to the development of disease symptoms.
Resumo:
Genetic transformation with genes that code for antimicrobial peptides has been an important strategy used to control bacterial diseases in fruit crops, including apples, pears, and citrus. Asian citrus canker (ACC) caused by Xanthomonas citri subsp. citri Schaad et al. (Xcc) is a very destructive disease, which affects the citrus industry in most citrus-producing areas of the world. Here, we report the production of genetically transformed Natal, Pera, and Valencia sweet orange cultivars (Citrus sinensis L. Osbeck) with the insect-derived attacin A (attA) gene and the evaluation of the transgenic plants for resistance to Xcc. Agrobacterium tumefaciens Smith and Towns-mediated genetic transformation experiments involving these cultivars led to the regeneration of 23 different lines. Genetically transformed plants were identified by polymerase chain reaction, and transgene integration was confirmed by Southern blot analyses. Transcription of attA gene was detected by Northern blot analysis in all plants, except for one Natal sweet orange transformation event. Transgenic lines were multiplied by grafting onto Rangpur lime rootstock plants (Citrus limonia Osbeck) and spray-inoculated with an Xcc suspension (10(6) cfu mL(-1)). Experiments were repeated three times in a completely randomized design with seven to ten replicates. Disease severity was determined in all transgenic lines and in the control (non-transgenic) plants 30 days after inoculation. Four transgenic lines of Valencia sweet orange showed a significant reduction in disease severity caused by Xcc. These reductions ranged from 58.3% to 77.8%, corresponding to only 0.16-0.30% of leaf diseased area as opposed to 0.72% on control plants. One transgenic line of Natal sweet orange was significantly more resistant to Xcc, with a reduction of 45.2% comparing to the control plants, with only 0.14% of leaf diseased area. Genetically transformed Pera sweet orange plants expressing attA gene did not show a significant enhanced resistance to Xcc, probably due to its genetic background, which is naturally more resistant to this pathogen. The potential effect of attacin A antimicrobial peptide to control ACC may be related to the genetic background of each sweet orange cultivar regarding their natural resistance to the pathogen.
Resumo:
Despite its outstanding position, the Brazilian citriculture is established on a very limited pool of varieties that limits its expansion and restricts the fruit availability throughout the year. This situation determines the urgent necessity of developing alternative scion and rootstock cultivars, with good performance under local conditions. `Folha Murcha` sweet orange (Citrus sinensis (L.) Osbeck) is a late-harvest cultivar, suitable both for the juice processing industry and the fresh fruit market, being described as tolerant to citrus canker (Xanthomonas citri subsp. citri Schaad et al.), and less affected by citrus variegated chlorosis (Xylella fastidiosa Wells et al.). A study was conducted in Bebedouro, Sao Paulo State, Brazil, to evaluate the horticultural performance of `Folha Murcha` sweet orange budded onto 12 rootstocks: the citrandarin `Changsha` mandarin (Citrus reticulata Blanco) x Poncirus trifoliata `English Small`: the hybrid `Rangpur` lime (Citrus limonia Osbeck) x `Swingle` citrumelo (P. trifoliata (L.) Raf x Citrus paradisi Macfad.); the trifoliates (P. trifoliata (L.) Raf.)`Rubidoux`, `FCAV`, and `Flying Dragon` (P. trifoliata var. monstrosa); the `Sun Chu Sha Kat` mandarin (C. reticulata Blanco); the `Sunki` mandarin (Citrus sunki (Hayata) Hart. ex. Tanaka); the `Rangpur` limes (C. limonia Osbeck) `Cravo Limeira` and `Cravo FCAV`; `Carrizo` citrange (C. sinensis x P. trifoliata), `Swingle` citrumelo (P. trifoliata x C. paradisi), and `Orlando` tangelo (C. paradisi x Citrus tangerina cv. `Dancy`). The experimental grove was planted in 2001, using a 7 m x 4 m spacing, in a randomized block design, with five replications and two plants per plot. No supplementary irrigation was applied. Fruit yield, canopy volume, tree tolerance to drought and to citrus variegated chlorosis, and fruit quality were assessed for each rootstock. Trees grafted onto the `Flying Dragon` trifoliate were smaller in size, but had largest yield efficiency when compared to those grafted onto other rootstocks. Lower alternate bearing index was observed on trees budded onto `Cravo FCAV` `Rangpur` lime. Both `Rangpur` lime rootstocks and the `Sunki` mandarin induced higher tree tolerance to drought. The `Flying Dragon` trifoliate induced better fruit quality and higher tolerance to citrus variegated chlorosis (CVC) to `Folha Murcha` trees. A cluster multivariate analysis identified three groups of rootstocks with similar effects on `Folha Murcha` tree performance. Among the 12 evaluated rootstocks, the `Flying Dragon` trifoliate has a unique effect on plant growth, tolerance to drought and CVC, fruit yield and fruit quality of `Folha Murcha` trees, and may be better suited for high-density plantings. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Beneficial bacteria interact with plants by colonizing the rhizosphere and roots followed by further spread through the inner tissues, resulting in endophytic colonization. The major factors contributing to these interactions are not always well understood for most bacterial and plant species. It is believed that specific bacterial functions are required for plant colonization, but also from the plant side specific features are needed, such as plant genotype (cultivar) and developmental stage. Via multivariate analysis we present a quantification of the roles of these components on the composition of root-associated and endophytic bacterial communities in potato plants, by weighing the effects of bacterial inoculation, plant genotype and developmental stage. Spontaneous rifampicin resistant mutants of two bacterial endophytes, Paenibacillus sp. strain E119 and Methylobacterium mesophilicum strain SR1.6/6, were introduced into potato plants of three different cultivars (Eersteling, Robijn and Karnico). Densities of both strains in, or attached to potato plants were measured by selective plating, while the effects of bacterial inoculation, plant genotype and developmental stage on the composition of bacterial, Alphaproteobacterial and Paenibacillus species were determined by PCR-denaturing gradient gel-electrophoresis (DGGE). Multivariate analyses revealed that the composition of bacterial communities was mainly driven by cultivar type and plant developmental stage, while Alphaproteobacterial and Paenibacillus communities were mainly influenced by bacterial inoculation. These results are important for better understanding the effects of bacterial inoculations to plants and their possible effects on the indigenous bacterial communities in relation with other plant factors such as genotype and growth stage.
Resumo:
The role of dominant bacterial groups in the plant rhizosphere, e.g., those belonging to the phyla Acidobacteria and Verrucomicrobia, has, so far, not been elucidated, and this is mainly due to the lack of culturable representatives. This study aimed to isolate hitherto-uncultured bacteria from the potato rhizosphere by a combination of cultivation approaches. An agar medium low in carbon availability (oligotrophic agar medium) and either amended with potato root exudates or catalase or left unamended was used with the aim to improve the culturability of bacteria from the potato rhizosphere. The colony forming unit numbers based on colonies and microcolonies were compared with microscopically determined fluorescence-stained cell numbers. Taxonomical diversity of the colonies was compared with that of library clones made from rhizosphere DNA, on the basis of 16S rRNA gene comparisons. The oligotrophic media amended or not with catalase or rhizosphere extract recovered up to 33.6% of the total bacterial numbers, at least seven times more than the recovery observed on R2A. Four hitherto-uncultured Verrucomicrobia subdivision 1 representatives were recovered on agar, but representatives of this group were not found in the clone library. The use of oligotrophic medium and its modifications enabled the growth of colony numbers, exceeding those on classical agar media. Also, it led to the isolation of hitherto-uncultured bacteria from the potato rhizosphere. Further improvement in cultivation will certainly result in the recovery of other as-yet-unexplored bacteria from the rhizosphere, making these groups accessible for further investigation, e.g., with respect to their possible interactions with plants.
Resumo:
Pseudomonas putida strain P9 is a novel competent endophyte from potato. P9 causes cultivar-dependent suppression of Phytophthora infestans. Colonization of the rhizoplane and endosphere of potato plants by P9 and its rifampin-resistant derivative P9R was studied. The purposes of this work were to follow the fate of P9 inside growing potato plants and to establish its effect on associated microbial communities. The effects of P9 and P9R inoculation were studied in two separate experiments. The roots of transplants of three different cultivars of potato were dipped in suspensions of P9 or P9R cells, and the plants were planted in soil. The fate of both strains was followed by examining colony growth and by performing PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Colonies of both strains were recovered from rhizoplane and endosphere samples of all three cultivars at two growth stages. A conspicuous band, representing P9 and P9R, was found in all Pseudomonas PCR-DGGE fingerprints for treated plants. The numbers of P9R CFU and the P9R-specific band intensities for the different replicate samples were positively correlated, as determined by linear regression analysis. The effects of plant growth stage, genotype, and the presence of P9R on associated microbial communities were examined by multivariate and unweighted-pair group method with arithmetic mean cluster analyses of PCR-DGGE fingerprints. The presence of strain P9R had an effect on bacterial groups identified as Pseudomonas azotoformans, Pseudomonas veronii, and Pseudomonas syringae. In conclusion, strain P9 is an avid colonizer of potato plants, competing with microbial populations indigenous to the potato phytosphere. Bacterization with a biocontrol agent has an important and previously unexplored effect on plant-associated communities.
Resumo:
In this work, supercritical technology was used to obtain extracts from Ocimum basilicum (sweet basil) with CO(2) and the cosolvent H(2)O at 1, 10, and 20% (w/w). The raw material was obtained from hydroponic cultivation. The extract`s global yield isotherms, chemical compositions, antioxidant activity, and cost of manufacturing were determined. The extraction assays were done for pressures of 10 to 30 MPa at 303 to 323 K. The identification of the compounds present in the extracts was made by GC-MS and ESI-MS. The antioxidant activity of extracts was determined using the coupled reaction of beta-carotene and linolenic acid. At 1% of cosolvent, the largest global yield was obtained at 10 MPa and 303 K (2%, dry basis-d.b.); at 10% of cosolvent the largest global yield was obtained at 10 and 15 MPa (11%, d.b.), and at 20% of cosolvent the largest global yield was detected at 30 MPa and 303 K (24%, d.b.). The main components identified in the extracts were eugenol, germacrene-D, epi-alpha-cadinol, malic acid, tartaric acid, ramnose, caffeic acid, quinic acid, kaempferol, caffeoylquinic acid, and kaempferol 3-O-glucoside. Sweet basil extracts exhibited high antioxidant activity compared to beta-carotene. Three types of SFE extracts from sweet basil were produced, for which the estimated cost of manufacturing (class 5 type) varied from US$ 47.96 to US$ 1,049.58 per kilogram of dry extract.
Resumo:
P>Yellow and sweet passion fruit are insect-pollinated species native to the tropics. Fruits are used commercially for human consumption worldwide. The yellow passion fruit is an outcrossing species with self-incompatible flowers. However, the reproductive system of the sweet passion fruit (Passiflora alata) has not been well elucidated. The objective of this work was to characterize aspects of the mating system in the sweet passion fruit using random amplified polymorphic DNA (RAPD) and microsatellite markers, particularly the rate of outcrossing in P. alata progenies. A multilocus outcrossing rate of t(m) = 0.994 was determined from RAPD and t(m) = 0.940 from microsatellites, supporting P. alata as an outcrossing species. The fixation indices of the maternal generation (F(m)) were -0.200 and 0.071 with RAPD and microsatellite loci, respectively, indicating the absence of inbreeding in the maternal generation. The paternity correlation (r(p)) varied from -0.008 with RAPD markers to 0.208 with microsatellite markers, suggesting a low probability of finding full sibs within the progenies. The results demonstrated that all progenies assessed in this study were derived from outcrossing.
Resumo:
Brevipalpus-transmitted viruses (BTV) cause chlorotic, necrotic and/or ringspot lesions in leaves and stems of orchids, citrus, coffee and several other plant species. There are two different types of BTVs, the nuclear and the cytoplasmic, based on maturation locale in the cell and particle morphology. The orchid fleck virus (OFV) is a BTV that infects orchids. Its short rodlike particles are 32-40 nm in diameter, 100-150 nm in length. OFV is found in the nucleus and is associated with intranuclear electronlucent viroplasms. In 1999, transmission electron microscopy analysis revealed a distinct type of virus causing orchid fleck symptoms. The bacilliform particles, 70-80 nm in diameter and 110-120 nm in length, induced electron-dense viroplasm inclusions in infected cells and resembled the cytoplasmic type associated with BTV, such as the citrus leprosis virus C. Our objective in the present study was to verify whether the cytoplasmic type virus found in orchids could be amplified using primers for other cytoplasmic BTVs, such as CiLV-C and Solanum violaefolium ringspot virus (SvRSV). Additionally, we aimed to differentiate the two BTVs found in orchids: the nuclear and the cytoplasmic types of OFV using microscopy and molecular and serological tools. This virus was not amplified by the CiLV-C and SvRSV primers, and neither the molecular nor the serological tools available to the OFV diagnosis reacted with it, demonstrating that they are definitely different viruses.