907 resultados para surface-tension-driven instability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The process of die swell in polymer jets is an important feature within polymer processing and can be explained through a study of its rheological effects. The existence of a thermocapillary effect, driven by the gradient of its surface tension, should be considered when examining a thermal jet that has a non-uniform temperature distribution on its free surface, as in various polymer processings. Both the rheological effect and thermocapillary effect on die swell can be studied numerically through a finite element method as used on a two-dimensional and unsteady model, in which a Coleman-Noll second-order fluid model is employed. The results show that the expanding angle depends on both the rheological property of the fluid and the pressure at the vessel exit. Although both the thermocapillary and the rheological effects contribute to the cross-section expansion of the fluid jet, the latter is more important in determining the expansion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical investigation is performed on the thermocapillary motion of two bubbles in arbitrary configuration in microgravity environment under the assumption that the surface tension is high enough to keep the bubbles spherical. The two bubbles are dr

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrothermal wave was investigated numerically for large-Prandtl-number fluid (Pr = 105.6) in a shallow cavity with different heated sidewalls. The traveling wave appears and propagates in the direction opposite to the surface flow (upstream) in the case of zero gravity when the applied temperature difference grows and over the critical value. The phase relationships of the disturbed velocity, temperature and pressure demonstrate that the traveling wave is driven by the disturbed temperature, which is named hydrothermal wave. The hydrothermal wave is so weak that the oscillatory flow field and temperature distribution can hardly be observed in the liquid layer. The exciting mechanism of hydrothermal wave is analyzed and discussed in the present paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coupling mechanism of Rayleigh effect and Marangoni effect in a liquid-porous system is investigated using a linear stability analysis. The eigenvalue problem is solved by means of a Chebyshev tau method. Results indicate that there are three coupling modes between the Rayleigh effect and the Marangoni effect for different depth ratios. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-time scale perturbation expansions were developed in weakly viscous fluids to investigate surface wave motions by linearizing the Navier-Stokes equation in a circular cylindrical vessel which is subject to a vertical oscillation. The fluid field was divided into an outer potential flow region and an inner boundary layer region. A linear amplitude equation of slowly varying complex amplitude, which incorporates a damping term and external excitation, was derived for the weakly viscid fluids. The condition for the appearance of stable surface waves was obtained and the critical curve was determined. In addition, an analytical expression for the damping coefficient was determined and the relationship between damping and other related parameters (such as viscosity, forced amplitude, forced frequency and the depth of fluid, etc.) was presented. Finally, the influence both of the surface tension and the weak viscosity on the mode formation was described by comparing theoretical and experimental results. The results show that when the forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when the forcing frequency is high, the surface tension of the fluid is prominent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die swell is an important, phenomenon. in polymer processing, and is explained usually by rheological properties of the fluid. Because of the nonuniform of temperature distribution on the free surface of the liquid jet, the thermo capillary convection driven by surface tension gradient exists. The rheological fluid flowing out of a die and painting on a moving solid wall is studied by the numerical finite element method of a two-dimensional and unsteady model in the present paper, and both the rheological effect of a non-Newtonian fluid and the thermocapillary effect are considered. The results show that both,effects; will enlarge the cross-section of the fluid jet, and the rheological effect of non-Newtonian fluid dominates the process in general.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical model is presented to investigate the size-dependent bending elastic properties of a nanobeam with the influence of the surface relaxation and the surface tension taken into consideration. The surface layer and its thickness of a nanostructure are defined unambiguously. A three-dimensional (3D) crystal model for a nanofilm with n layers of relaxed atoms is investigated. The four nonzero elastic constants of the nanofilm are derived, and then the Young's modulus for simple tension is obtained. Using the relation of energy equilibrium, the size-dependent effective elastic modulus and effective flexural rigidity of a nanobeam with two kinds of cross sections are derived, and their dependence on the surface relaxation and the surface tension is analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The onset of oscillation in the floating zone convection driven by the gradient of surface tension was studied numerically for an unsteady and two-dimensional model, and studies were concentrated on the influence of liquid bridge volume on the onset of oscillation in comparison with the experimental results in the Paper I. The numerical results agree with the experimental ones presented in the previous paper, in which the distributions of critical applied temperature difference depending on the volume of liquid bridge and a gap range of liquid volume in marginal stability curve were obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental investigation will be performed on the thermocapillary motion of two bubbles in Chinese return-satellite. The experiment will study the migration process of bubble caused by thermocapillary effect in microgravity environment, and their interaction between two bubbles. The bubble is driven by the thermocapillary stress on the surface on account on the variation of the surface tension with temperature. The interaction between two bubbles becomes significant as the separation distance between them is reduced drastically so that the bubble interaction has to be considered. Recently, the problem has been discussed on the method of successive reflections, and accurate migration velocities of two arbitrarily oriented bubbles were derived for the limit of small Marangoni and Reynolds numbers. Numerical results for the migration of the two bubbles show that the interaction between two bubbles has significant influence on their thermocapillary migration velocities with a bubble approaching another. However, there is a lack of experimental validate for the theoretic results. Now the experimental facility is designed for experimenting time after time. A cone-shaped top cover is used to expel bubble from the cell after experiment. But, the cone-shaped top cover can cause temperature uniformity on horizontal plane in whole cell. Therefore, a metal board with multi-holes is fixed under the top cover. The board is able to let the temperature distribution on the board uniform because of their high heat conductivity, and the bubble can pass through it. In the system two bubbles are injected into the test cell respectively by two sets of cylinder. And the bubbles sizes are controlled by two sets of step-by-step motor. It is very important problem that bubble can be divorced from the injecting mouth in microgravity environment. Thus, other two sets of device for injecting mother liquid were used to push bubble. The working principle of injecting mother liquid is to utilize pressure difference directly between test cell and reservoir

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rayleigh-Marangoni-B,nard instability in a system consisting of a horizontal liquid layer and its own vapor has been investigated. The two layers are separated by a deformable evaporation interface. A linear stability analysis is carried out to study the convective instability during evaporation. In previous works, the interface is assumed to be under equilibrium state. In contrast with previous works, we give up the equilibrium assumption and use Hertz-Knudsen's relation to describe the phase change under non-equilibrium state. The influence of Marangoni effect, gravitational effect, degree of non-equilibrium and the dynamics of the vapor on the instability are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis examines two problems concerned with surface effects in simple molecular systems. The first is the problem associated with the interaction of a fluid with a solid boundary, and the second originates from the interaction of a liquid with its own vapor.

For a fluid in contact with a solid wall, two sets of integro-differential equations, involving the molecular distribution functions of the system, are derived. One of these is a particular form of the well-known Bogolyubov-Born-Green-Kirkwood-Yvon equations. For the second set, the derivation, in contrast with the formulation of the B.B.G.K.Y. hierarchy, is independent of the pair-potential assumption. The density of the fluid, expressed as a power series in the uniform fluid density, is obtained by solving these equations under the requirement that the wall be ideal.

The liquid-vapor interface is analyzed with the aid of equations that describe the density and pair-correlation function. These equations are simplified and then solved by employing the superposition and the low vapor density approximations. The solutions are substituted into formulas for the surface energy and surface tension, and numerical results are obtained for selected systems. Finally, the liquid-vapor system near the critical point is examined by means of the lowest order B.B.G.K.Y. equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is to investigate the effects of channel surface wettability and temperature gradients on the boiling flow pattern in a single microchannel. The test section consists of a bottom silicon substrate bonded with a top glass cover. Three consecutive parts of an inlet fluid plenum, a central microchannel and an outlet fluid plenum were etched in the silicon substrate. The central microchannel had a width of 800 mu m and a depth of 30 mu m. Acetone liquid was used as the working fluid. High outlet vapor qualities were dealt with here. The flow pattern consists of a fluid triangle (shrinkage of the liquid films) and a connected long liquid rivulet, which is generated in the central microchannel in the timescale of milliseconds. The peculiar flow pattern is formed due to the following reasons: (1) the liquid rivulet tends to have a large contact area with the top hydrophilic channel surface of the glass cover, but a smaller contact area with the bottom silicon hydrophobic surface. (2) The temperature gradient in the chip width direction at the top channel surface of the glass cover not only causes the shrinkage of the liquid films in the central microchannel upstream, but also attracts the liquid rivulet populated near the microchannel centerline. (3) The zigzag pattern is formed due to the competition between the evaporation momentum forces at the vapor-liquid interfaces and the force due to the Marangoni effect. The former causes the rivulet to deviate from the channel centerline and the latter draws the rivulet toward the channel centerline. (4) The temperature gradient along the flow direction in the central microchannel downstream causes the breakup of the rivulet to form isolated droplets there. (5) Liquid stripes inside the upstream fluid triangle were caused by the small capillary number of the liquid film, at which the large surface tension force relative to the viscous force tends to populate the liquid film locally on the top glass cover surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The wettability of thin poly(methyl methacrylate) (PMMA) films on a silicon wafer with a native oxide layer exposed to solvent vapors is dependent on the solvent properties. In the nonsolvent vapor, the film spread on the substrate with some protrusions generated on the film surface. In the good solvent vapor, dewetting happened. A new interface formed between the anchored PMMA chains and the swollen upper part of the film. Entropy effects caused the upper movable chains to dewet on the anchored chains. The rim instability depended on the surface tension of solvent (i.e., the finger was generated in acetone vapor (gamma(acetone) = 24 mN/m), not in dioxane vapor (gamma(dioxane) = 33 mN/m)). The spacing (lambda) that grew as an exponential function of film thickness h scaled as similar to h(1.31) whereas the mean size (D) of the resulting droplets grew linearly with h.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electromagnetic levitation of electrically conductive droplets by alternating magnetic fields is a technique used to measure the physical properties of liquid metallic alloys such as surface tension or viscosity. Experiments can be conducted under terrestrial conditions or in microgravity, to reduce electromagnetic stirring and shaping of the droplet. Under such conditions, the time-dependent behaviour of a point of the free surface is recorded. Then the signal is analysed considering the droplet as a harmonic damped oscillator. We use a spectral code, for fluid flow and free surface descriptions, to check the validity of this assumption for two cases. First when the motion inside the droplet is generated by its initial distortion only and second, when the droplet is located in a uniform magnetic field originating far from the droplet. It is found that some deviations exist which can lead to an overestimate of the value of viscosity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intense AC magnetic field required to produce levitation in terrestrial conditions, along with the buoyancy and thermo-capillary forces, results in turbulent convective flow within the droplet. The use of a homogenous DC magnetic field allows the convective flow to be damped. However the turbulence properties are affected at the same time, leading to a possibility that the effective turbulent damping is considerably reduced. The MHD modified K-Omega turbulence model allows the investigation of the effect of magnetic field on the turbulence. The model incorporates free surface deformation, the temperature dependent surface tension, turbulent momentum transport, electromagnetic and gravity forces. The model is adapted to incorporate a periodic laser heating at the top of the droplet, which have been used to measure the thermal conductivity of the material by calculating the phase lag between the frequency of the laser heating and the temperature response at the bottom. The numerical simulations show that with the gradual increase of the DC field the fluid flow within the droplet is initially increasing in intensity. Only after a certain threshold magnitude of the field the flow intensity starts to decrease. In order to achieve the flow conditions close to the ‘laminar’ a D.C. magnetic field >4 Tesla is required to measure the thermal conductivity accurately. The reduction in the AC field driven flow in the main body of the drop leads to a noticeable thermo-capillary convection at the edge of the droplet. The uniform vertical DC magnetic field does not stop a translational oscillation of the droplet along the field, which is caused by the variation in total levitation force due to the time-dependent surface deformation.