872 resultados para structural magnetic resonance imaging (sMRI)
Resumo:
In medical processes where ionizing radiation is used, dose planning and dose delivery are the key elements to patient safety and treatment success, particularly, when the delivered dose in a single session of treatment can be an order of magnitude higher than the regular doses of radiotherapy. Therefore, the radiation dose should be well defined and precisely delivered to the target while minimizing radiation exposure to surrounding normal tissues [1]. Several methods have been proposed to obtain three-dimensional (3-D) dose distribution [2, 3]. In this paper, we propose an alternative method, which can be easily implemented in any stereotactic radiosurgery center with a magnetic resonance imaging (MRI) facility. A phantom with or without scattering centers filled with Fricke gel solution is irradiated with Gamma Knife(A (R)) system at a chosen spot. The phantom can be a replica of a human organ such as head, breast or any other organ. It can even be constructed from a real 3-D MR image of an organ of a patient using a computer-aided construction and irradiated at a specific region corresponding to the tumor position determined by MRI. The spin-lattice relaxation time T (1) of different parts of the irradiated phantom is determined by localized spectroscopy. The T (1)-weighted phantom images are used to correlate the image pixels intensity to the absorbed dose and consequently a 3-D dose distribution with a high resolution is obtained.
Resumo:
OBJECTIVE: To assess the cardiovascular features of Ullrich-Turner's syndrome using echocardiography and magnetic resonance imaging, and to correlate them with the phenotype and karyotype of the patients. The diagnostic concordance between the 2 methods was also assessed. METHODS: Fifteen patients with the syndrome were assessed by echocardiography and magnetic resonance imaging (cardiac chambers, valves, and aorta). Their ages ranged from 10 to 28 (mean of 16.7) years. The karyotype was analyzed in 11 or 25 metaphases of peripheral blood lymphocytes, or both. RESULTS: The most common phenotypic changes were short stature and spontaneous absence of puberal development (100%); 1 patient had a cardiac murmur. The karyotypes detected were as follows: 45,X (n=7), mosaics (n=5), and deletions (n=3). No echocardiographic changes were observed. In regard to magnetic resonance imaging, coarctation and dilation of the aorta were found in 1 patient, and isolated dilation of the aorta was found in 4 patients. CONCLUSION: The frequencies of coarctation and dilation of the aorta detected on magnetic resonance imaging were similar to those reported in the literature (5.5% to 20%, and 6.3% to 29%, respectively). This confirmed the adjuvant role of magnetic resonance imaging to Doppler echocardiography for diagnosing cardiovascular alterations in patients with Ullrich-Turner's syndrome.
Resumo:
Two cases of type 1 dermoid sinus in Rhodesian ridgebacks are described, with emphasis on the use of magnetic resonance imaging (MRI) in the diagnosis and delineation of the lesions. Magnetic resonance imaging was useful in identifying fluid-filled structures, fibrous capsules, and sinus tracts, but was not able to identify the termination of the tracts.
Resumo:
In the present experimental study we assessed induced osteoarthritis data in rabbits, compared three diagnostic methods, i.e., radiography (XR), computed tomography (CT) and magnetic resonance imaging (MRI), and correlated the imaging findings with those obtained by macroscopic evaluation. Ten young female rabbits of the Norfolk breed were used. Seven rabbits had the right knee immobilized in extension for a period of 12 weeks (immobilized group), and three others did not have a limb immobilized and were maintained under the same conditions (control group). Alterations observed by XR, CT and MRI after the period of immobilization were osteophytes, osteochondral lesions, increase and decrease of joint space, all of them present both in the immobilized and non-immobilized contralateral limbs. However, a significantly higher score was obtained for the immobilized limbs (XT: P = 0.016, CT: P = 0.031, MRI: P = 0.0156). All imaging methods were able to detect osteoarthritis changes after the 12 weeks of immobilization. Macroscopic evaluation identified increased thickening of joint capsule, proliferative and connective tissue in the femoropatellar joint, and irregularities of articular cartilage, especially in immobilized knees. The differences among XR, CT and MRI were not statistically significant for the immobilized knees. However, MRI using a 0.5 Tesla scanner was statistically different from CT and XR for the non-immobilized contralateral knees. We conclude that the three methods detected osteoarthritis lesions in rabbit knees, but MRI was less sensitive than XR and CT in detecting lesions compatible with initial osteoarthritis. Since none of the techniques revealed all the lesions, it is important to use all methods to establish an accurate diagnosis.
Resumo:
BACKGROUND: We investigated, with magnetic resonance imaging, the distance of the dura mater to the spinal cord in patients without spinal or medullar disease at the 2nd, 5th, and 10th thoracic segments.METHODS: Fifty patients in the supine position underwent magnetic resonance imaging. Medial sagittal slices of the 2nd, 5th, and 10th thoracic segments were measured for the relative distances using the 1.5-T superconducting system (Gyroscan Intera, Philips Medical Systems, Best, the Netherlands). In 10 patients, the angles relative to the tangent at the insertion point on the skin were measured.RESULTS: The posterior dural-spinal cord distance is significantly greater at the midthoracic region (5th thoracic = 5.8 +/- 0.8 mm) than at the upper (2nd thoracic = 3.9 +/- 0.8 mm) and lower thoracic levels (10th thoracic = 4.1 +/- 1.0 mm) (P < 0.015). There were no differences between interspaces T2 and 110. There was no correlation between age and the measured distance between the dura mater and the spinal cord. The entry angle of the needle at T2 was 9.0 degrees +/- 2.5 degrees; at T5, 45.0 degrees +/- 7.4 degrees; and at T10, 9.50 degrees +/- 4.2 degrees.CONCLUSIONS: This study demonstrated that there is greater depth of the posterior subarachnoid space at the T2, T5, and T10 levels. The greater distance was found at T5. (Anesth Analg 2010;110:1494-5)
Resumo:
The incidence of encephalic tumors in dogs and cats has increased in recent years due to the constant advancement of methods of specialist Diagnostic Imaging: Magnetic Resonance Imaging (MRI) and Computed Tomography (CT), used in small animals. These tools, which were distant in the past, are now becoming increasingly important as an additional aid to the identification of tumor processes in the Central Nervous System. The objective, of the present study, was describe imaging findings obtained in 32 cases of encephalic tumors, through techniques of CT and MR imaging procedures during the years 2004 to 2011. Were diagnosed 19/32 by MRI and 13/32 by CT, being the most affected breed Boxer (9/32), the mean age was 10 years.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective To assess several baseline risk factors that may predict patellofemoral and tibiofemoral cartilage loss during a 6-month period. Methods For 177 subjects with chronic knee pain, 3T magnetic resonance imaging (MRI) of both knees was performed at baseline and followup. Knees were semiquantitatively assessed, evaluating cartilage morphology, subchondral bone marrow lesions, meniscal morphology/extrusion, synovitis, and effusion. Age, sex, and body mass index (BMI), bone marrow lesions, meniscal damage/extrusion, synovitis, effusion, and prevalent cartilage damage in the same subregion were evaluated as possible risk factors for cartilage loss. Logistic regression models were applied to predict cartilage loss. Models were adjusted for age, sex, treatment, and BMI. Results Seventy-nine subregions (1.6%) showed incident or worsening cartilage damage at followup. None of the demographic risk factors was predictive of future cartilage loss. Predictors of patellofemoral cartilage loss were effusion, with an adjusted odds ratio (OR) of 3.5 (95% confidence interval [95% CI] 1.39.4), and prevalent cartilage damage in the same subregion with an adjusted OR of 4.3 (95% CI 1.314.1). Risk factors for tibiofemoral cartilage loss were baseline meniscal extrusion (adjusted OR 3.6 [95% CI 1.310.1]), prevalent bone marrow lesions (adjusted OR 4.7 [95% CI 1.119.5]), and prevalent cartilage damage (adjusted OR 15.3 [95% CI 4.947.4]). Conclusion Cartilage loss over 6 months is rare, but may be detected semiquantitatively by 3T MRI and is most commonly observed in knees with Kellgren/Lawrence grade 3. Predictors of patellofemoral cartilage loss were effusion and prevalent cartilage damage in the same subregion. Predictors of tibiofemoral cartilage loss were prevalent cartilage damage, bone marrow lesions, and meniscal extrusion.
Resumo:
Purpose: To assess the correlation between MRI findings of the pancreas with those of the heart and liver in patients with beta thalassemia; to compare the pancreas T2* MRI results with glucose and ferritin levels and labile plasma iron (LPI). Materials and methods: We retrospectively evaluated chronically transfused patients, testing glucose with enzymatic tests, serum ferritin with chemiluminescence, LPI with cellular fluorescence, and T2* MRI to assess iron content in the heart, liver, and pancreas. MRI results were compared with one another and with serum glucose, ferritin, and LPI. Liver iron concentration (LIC) was determined in 11 patients' liver biopsies by atomic absorption spectrometry. Results: 289 MRI studies were available from 115 patients during the period studied. 9.4% of patients had overt diabetes and an additional 16% of patients had impaired fasting glucose. Both pancreatic and cardiac R2* had predictive power (p < 0.0001) for identifying diabetes. Cardiac and pancreatic R2* were modestly correlated with one another (r(2) = 0.20, p < 0.0001). Both were weakly correlated with LIC (r(2) = 0.09, p < 0.0001 for both) and serum ferritin (r(2) = 0.14, p < 0.0001 and r(2) = 0.03, p < 0.02, respectively). None of the three served as a screening tool for single observations. There is a strong log-log, or power-law, relationship between ratio of signal intensity (SIR) values and pancreas R2* with an r(2) of 0.91. Conclusions: Pancreatic iron overload can be assessed by MRI, but siderosis in other organs did not correlate significantly with pancreatic hemosiderosis. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The autoregressive (AR) estimator, a non-parametric method, is used to analyze functional magnetic resonance imaging (fMRI) data. The same method has been used, with success, in several other time series data analysis. It uses exclusively the available experimental data points to estimate the most plausible power spectra compatible with the experimental data and there is no need to make any assumption about non-measured points. The time series, obtained from fMRI block paradigm data, is analyzed by the AR method to determine the brain active regions involved in the processing of a given stimulus. This method is considerably more reliable than the fast Fourier transform or the parametric methods. The time series corresponding to each image pixel is analyzed using the AR estimator and the corresponding poles are obtained. The pole distribution gives the shape of power spectra, and the pixels with poles at the stimulation frequency are considered as the active regions. The method was applied in simulated and real data, its superiority is shown by the receiver operating characteristic curves which were obtained using the simulated data.
Resumo:
Purpose: Mossy fiber sprouting (MFS) is a frequent finding following status epilepticus (SE). The present study aimed to test the feasibility of using manganese-enhanced magnetic resonance imaging (MEMRI) to detect MFS in the chronic phase of the well-established pilocarpine (Pilo) rat model of temporal lobe epilepsy (TLE). Methods: To modulate MFS, cycloheximide (CHX), a protein synthesis inhibitor, was coadministered with Pilo in a subgroup of animals. In vivo MEMRI was performed 3 months after induction of SE and compared to the neo-Timm histologic labeling of zinc mossy fiber terminals in the dentate gyrus (DG). Key Findings: Chronically epileptic rats displaying MFS as detected by neo-Timm histology had a hyperintense MEMRI signal in the DG, whereas chronically epileptic animals that did not display MFS had minimal MEMRI signal enhancement compared to nonepileptic control animals. A strong correlation (r = 0.81, p < 0.001) was found between MEMRI signal enhancement and MFS. Significance: This study shows that MEMRI is an attractive noninvasive method for detection of mossy fiber sprouting in vivo and can be used as an evaluation tool in testing therapeutic approaches to manage chronic epilepsy.
Resumo:
Purpose: To evaluate if the Breast Imaging Reporting and Data System (BI-RADS) ultrasound descriptor of orientation can be used in magnetic resonance imaging (MRI). Materials and Methods: We conducted a retrospective study to evaluate breast mass lesions identified by MRI from 2008 to 2010 who had ultrasound (US) and histopathologic confirmation. Lesions were measured in the craniocaudal (CC), anteroposterior (AP), and transverse (T) axes and classified as having a nonparallel orientation, longest axis perpendicular to Cooper's ligaments, or in a parallel orientation when the longest axis is parallel to Cooper's ligaments. The MR image data were correlated with the US orientation according to BI-RADS and histopathological diagnosis. Results: We evaluated 71 lesions in 64 patients. On MRI, 27 lesions (38.0%) were nonparallel (8 benign and 19 malignant), and 44 lesions (62.0%) were parallel (33 benign and 11 malignant). There was significant agreement between the lesion orientation on US and MRI (kappa value = 0.901). The positive predictive values (PPV) for parallel orientation malignancy on MR and US imaging were 70.4% and 73.1%, respectively. Conclusion: A descriptor of orientation for breast lesions can be used on MRI with PPV for malignant lesions similar to US. J. Magn. Reson. Imaging 2012; 36:13831388. (C) 2012 Wiley Periodicals, Inc.