915 resultados para stability analysis


Relevância:

70.00% 70.00%

Publicador:

Resumo:

V2Ic control provides very fast dynamic performance to the Buck converter both under load steps and under voltage reference steps. However, the design of this control is complex since it is prone to subharmonic oscillations and several parameters affect the stability of the system. This paper derives and validates a very accurate modeling and stability analysis of a closed-loop V2Ic control using the Floquet theory. This allows the derivation of sensitivity analysis to design a robust converter. The proposed methodology is validated on a 5-MHz Buck converter. The work is also extended to V2 control using the same methodology, showing high accuracy and robustness. The paper also demonstrates, on the V2 control, that even a low bandwidth-linear controller can affect the stability of a ripple-based control.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have examined the dynamical behavior of the kink solutions of the one-dimensional sine-Gordon equation in the presence of a spatially periodic parametric perturbation. Our study clarifies and extends the currently available knowledge on this and related nonlinear problems in four directions. First, we present the results of a numerical simulation program that are not compatible with the existence of a radiative threshold predicted by earlier calculations. Second, we carry out a perturbative calculation that helps interpret those previous predictions, enabling us to understand in depth our numerical results. Third, we apply the collective coordinate formalism to this system and demonstrate numerically that it reproduces accurately the observed kink dynamics. Fourth, we report on the occurrence of length-scale competition in this system and show how it can be understood by means of linear stability analysis. Finally, we conclude by summarizing the general physical framework that arises from our study.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this article we present a computational framework for isolating spatial patterns arising in the steady states of reaction-diffusion systems. Such systems have been used to model many different phenomena in areas such as developmental and cancer biology, cell motility and material science. Often one is interested in identifying parameters which will lead to a particular pattern. To attempt to answer this, we compute eigenpairs of the Laplacian on a variety of domains and use linear stability analysis to determine parameter values for the system that will lead to spatially inhomogeneous steady states whose patterns correspond to particular eigenfunctions. This method has previously been used on domains and surfaces where the eigenvalues and eigenfunctions are found analytically in closed form. Our contribution to this methodology is that we numerically compute eigenpairs on arbitrary domains and surfaces. Here we present various examples and demonstrate that mode isolation is straightforward especially for low eigenvalues. Additionally we see that if two or more eigenvalues are in a permissible range then the inhomogeneous steady state can be a linear combination of the respective eigenfunctions. Finally we show an example which suggests that pattern formation is robust on similar surfaces in cases that the surface either has or does not have a boundary.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Melnikov's method is used to analytically predict the onset of chaotic instability in a rotating body with internal energy dissipation. The model has been found to exhibit chaotic instability when a harmonic disturbance torque is applied to the system for a range of forcing amplitude and frequency. Such a model may be considered to be representative of the dynamical behavior of a number of physical systems such as a spinning spacecraft. In spacecraft, disturbance torques may arise under malfunction of the control system, from an unbalanced rotor, from vibrations in appendages or from orbital variations. Chaotic instabilities arising from such disturbances could introduce uncertainties and irregularities into the motion of the multibody system and consequently could have disastrous effects on its intended operation. A comprehensive stability analysis is performed and regions of nonlinear behavior are identified. Subsequently, the closed form analytical solution for the unperturbed system is obtained in order to identify homoclinic orbits. Melnikov's method is then applied on the system once transformed into Hamiltonian form. The resulting analytical criterion for the onset of chaotic instability is obtained in terms of critical system parameters. The sufficient criterion is shown to be a useful predictor of the phenomenon via comparisons with numerical results. Finally, for the purposes of providing a complete, self-contained investigation of this fundamental system, the control of chaotic instability is demonstated using Lyapunov's method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The usual assumption that the processing times of the operations are known in advance is the strictest one in scheduling theory. This assumption essentially restricts practical aspects of deterministic scheduling theory since it is not valid for the most processes arising in practice. The paper is devoted to a stability analysis of an optimal schedule, which may help to extend the significance of scheduling theory for decision-making in the real-world applications. The term stability is generally used for the phase of an algorithm, at which an optimal solution of a problem has already been found, and additional calculations are performed in order to study how solution optimality depends on variation of the numerical input data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thermodynamic stability measurements on proteins and protein-ligand complexes can offer insights not only into the fundamental properties of protein folding reactions and protein functions, but also into the development of protein-directed therapeutic agents to combat disease. Conventional calorimetric or spectroscopic approaches for measuring protein stability typically require large amounts of purified protein. This requirement has precluded their use in proteomic applications. Stability of Proteins from Rates of Oxidation (SPROX) is a recently developed mass spectrometry-based approach for proteome-wide thermodynamic stability analysis. Since the proteomic coverage of SPROX is fundamentally limited by the detection of methionine-containing peptides, the use of tryptophan-containing peptides was investigated in this dissertation. A new SPROX-like protocol was developed that measured protein folding free energies using the denaturant dependence of the rate at which globally protected tryptophan and methionine residues are modified with dimethyl (2-hydroxyl-5-nitrobenzyl) sulfonium bromide and hydrogen peroxide, respectively. This so-called Hybrid protocol was applied to proteins in yeast and MCF-7 cell lysates and achieved a ~50% increase in proteomic coverage compared to probing only methionine-containing peptides. Subsequently, the Hybrid protocol was successfully utilized to identify and quantify both known and novel protein-ligand interactions in cell lysates. The ligands under study included the well-known Hsp90 inhibitor geldanamycin and the less well-understood omeprazole sulfide that inhibits liver-stage malaria. In addition to protein-small molecule interactions, protein-protein interactions involving Puf6 were investigated using the SPROX technique in comparative thermodynamic analyses performed on wild-type and Puf6-deletion yeast strains. A total of 39 proteins were detected as Puf6 targets and 36 of these targets were previously unknown to interact with Puf6. Finally, to facilitate the SPROX/Hybrid data analysis process and minimize human errors, a Bayesian algorithm was developed for transition midpoint assignment. In summary, the work in this dissertation expanded the scope of SPROX and evaluated the use of SPROX/Hybrid protocols for characterizing protein-ligand interactions in complex biological mixtures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the landslide-prone area near the Nice international airport, southeastern France, an interdisciplinary approach is applied to develop realistic lithological/geometrical profiles and geotechnical/strength sub-seafloor models. Such models are indispensable for slope stability assessments using limit equilibrium or finite element methods. Regression analyses, based on the undrained shear strength (su) of intact gassy sediments are used to generate a sub-seafloor strength model based on 37 short dynamic and eight long static piezocone penetration tests, and laboratory experiments on one Calypso piston and 10 gravity cores. Significant strength variations were detected when comparing measurements from the shelf and the shelf break, with a significant drop in su to 5.5 kPa being interpreted as a weak zone at a depth between 6.5 and 8.5 m below seafloor (mbsf). Here, a 10% reduction of the in situ total unit weight compared to the surrounding sediments is found to coincide with coarse-grained layers that turn into a weak zone and detachment plane for former and present-day gravitational, retrogressive slide events, as seen in 2D chirp profiles. The combination of high-resolution chirp profiles and comprehensive geotechnical information allows us to compute enhanced 2D finite element slope stability analysis with undrained sediment response compared to previous 2D numerical and 3D limit equilibrium assessments. Those models suggest that significant portions (detachment planes at 20 m or even 55 mbsf) of the Quaternary delta and slope apron deposits may be mobilized. Given that factors of safety are equal or less than 1 when further considering the effect of free gas, a high risk for a landslide event of considerable size off Nice international airport is identified

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a novel approach to the dynamics of reactions of diffusing chemical species with species fixed in space e.g. by binding to a membrane. The non-diffusing reaction partners are clustered in areas with a diameter smaller than the diffusion length of the diffusing partner. The activated fraction of the fixed species determines the size of an active sub-region of the cluster. Linear stability analysis reveals that diffusion is one of the ma jor determinants of the stability of the dynamics. We illustrate the model concept with Ca²⁺ dynamics in living cells, which has release channels as fixed reaction partners. Our results suggest that spatial and temporal structures in intracellular Ca²⁺ dynamics are caused by fluctuations due to the small number of channels per cluster.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis deals with the sizing and analysis of the electrical power system of a petrochemical plant. The activity was carried out in the framework of an electrical engineering internship. The sizing and electrical calculations, as well as the study of the dynamic behavior of network quantities, are accomplished by using the ETAP (Electrical Transient Analyzer Program) software. After determining the type and size of the loads, the calculation of power flows is carried out for all possible network layout and different power supply configurations. The network is normally operated in a double radial configuration. However, the sizing must be carried out taking into account the most critical configuration, i.e., the temporary one of single radial operation, and also considering the most unfavorable power supply conditions. The calculation of shortcircuit currents is then carried out and the appropriate circuit breakers are selected. Where necessary, capacitor banks are sized in order to keep power factor at the point of common coupling within the preset limits. The grounding system is sized by using the finite element method. For loads with the highest level of criticality, UPS are sized in order to ensure their operation even in the absence of the main power supply. The main faults that can occur in the plant are examined, determining the intervention times of the protections to ensure that, in case of failure on one component, the others can still properly operate. The report concludes with the dynamic and stability analysis of the power system during island operation, in order to ensure that the two gas turbines are able to support the load even during transient conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The basic reproduction number is a key parameter in mathematical modelling of transmissible diseases. From the stability analysis of the disease free equilibrium, by applying Routh-Hurwitz criteria, a threshold is obtained, which is called the basic reproduction number. However, the application of spectral radius theory on the next generation matrix provides a different expression for the basic reproduction number, that is, the square root of the previously found formula. If the spectral radius of the next generation matrix is defined as the geometric mean of partial reproduction numbers, however the product of these partial numbers is the basic reproduction number, then both methods provide the same expression. In order to show this statement, dengue transmission modelling incorporating or not the transovarian transmission is considered as a case study. Also tuberculosis transmission and sexually transmitted infection modellings are taken as further examples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a binary Bose-Einstein condensate (BEC) described by a system of two-dimensional (2D) Gross-Pitaevskii equations with the harmonic-oscillator trapping potential. The intraspecies interactions are attractive, while the interaction between the species may have either sign. The same model applies to the copropagation of bimodal beams in photonic-crystal fibers. We consider a family of trapped hidden-vorticity (HV) modes in the form of bound states of two components with opposite vorticities S(1,2) = +/- 1, the total angular momentum being zero. A challenging problem is the stability of the HV modes. By means of a linear-stability analysis and direct simulations, stability domains are identified in a relevant parameter plane. In direct simulations, stable HV modes feature robustness against large perturbations, while unstable ones split into fragments whose number is identical to the azimuthal index of the fastest growing perturbation eigenmode. Conditions allowing for the creation of the HV modes in the experiment are discussed too. For comparison, a similar but simpler problem is studied in an analytical form, viz., the modulational instability of an HV state in a one-dimensional (1D) system with periodic boundary conditions (this system models a counterflow in a binary BEC mixture loaded into a toroidal trap or a bimodal optical beam coupled into a cylindrical shell). We demonstrate that the stabilization of the 1D HV modes is impossible, which stresses the significance of the stabilization of the HV modes in the 2D setting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Direct stability analysis and numerical simulations have been employed to identify and characterize secondary instabilities in the wake of the flow around two identical circular cylinders in tandem arrangements. The centre-to-centre separation was varied from 1.2 to 10 cylinder diameters. Four distinct regimes were identified and salient cases chosen to represent the different scenarios observed, and for each configuration detailed results are presented and compared to those obtained for a flow around an isolated cylinder. It was observed that the early stages of the wake transition changes significantly if the separation is smaller than the drag inversion spacing. The onset of the three-dimensional instabilities were calculated and the unstable modes are fully described. In addition, we assessed the nonlinear character of the bifurcations and physical mechanisms are proposed to explain the instabilities. The dependence of the critical Reynolds number on the centre-to-centre separation is also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper deals with the calculation of the discrete approximation to the full spectrum for the tangent operator for the stability problem of the symmetric flow past a circular cylinder. It is also concerned with the localization of the Hopf bifurcation in laminar flow past a cylinder, when the stationary solution loses stability and often becomes periodic in time. The main problem is to determine the critical Reynolds number for which a pair of eigenvalues crosses the imaginary axis. We thus present a divergence-free method, based on a decoupling of the vector of velocities in the saddle-point system from the vector of pressures, allowing the computation of eigenvalues, from which we can deduce the fundamental frequency of the time-periodic solution. The calculation showed that stability is lost through a symmetry-breaking Hopf bifurcation and that the critical Reynolds number is in agreement with the value presented in reported computations. (c) 2007 IMACS. Published by Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The most popular algorithms for blind equalization are the constant-modulus algorithm (CMA) and the Shalvi-Weinstein algorithm (SWA). It is well-known that SWA presents a higher convergence rate than CMA. at the expense of higher computational complexity. If the forgetting factor is not sufficiently close to one, if the initialization is distant from the optimal solution, or if the signal-to-noise ratio is low, SWA can converge to undesirable local minima or even diverge. In this paper, we show that divergence can be caused by an inconsistency in the nonlinear estimate of the transmitted signal. or (when the algorithm is implemented in finite precision) by the loss of positiveness of the estimate of the autocorrelation matrix, or by a combination of both. In order to avoid the first cause of divergence, we propose a dual-mode SWA. In the first mode of operation. the new algorithm works as SWA; in the second mode, it rejects inconsistent estimates of the transmitted signal. Assuming the persistence of excitation condition, we present a deterministic stability analysis of the new algorithm. To avoid the second cause of divergence, we propose a dual-mode lattice SWA, which is stable even in finite-precision arithmetic, and has a computational complexity that increases linearly with the number of adjustable equalizer coefficients. The good performance of the proposed algorithms is confirmed through numerical simulations.