Kink stability, propagation, and length-scale competition in the periodically modulated sine-gordon equation


Autoria(s): Sánchez, Angel; Bishop, A. R.; Domínguez-Adame Acosta, Francisco
Data(s)

01/05/1994

Resumo

We have examined the dynamical behavior of the kink solutions of the one-dimensional sine-Gordon equation in the presence of a spatially periodic parametric perturbation. Our study clarifies and extends the currently available knowledge on this and related nonlinear problems in four directions. First, we present the results of a numerical simulation program that are not compatible with the existence of a radiative threshold predicted by earlier calculations. Second, we carry out a perturbative calculation that helps interpret those previous predictions, enabling us to understand in depth our numerical results. Third, we apply the collective coordinate formalism to this system and demonstrate numerically that it reproduces accurately the observed kink dynamics. Fourth, we report on the occurrence of length-scale competition in this system and show how it can be understood by means of linear stability analysis. Finally, we conclude by summarizing the general physical framework that arises from our study.

Formato

application/pdf

Identificador

http://eprints.ucm.es/37919/1/Dguez-Adame158.pdf

Idioma(s)

en

Publicador

American Physical Society

Relação

http://eprints.ucm.es/37919/

http://dx.doi.org/10.1103/PhysRevE.49.4603

10.1103/PhysRevE.49.4603

PB92-0378

Direitos

info:eu-repo/semantics/openAccess

Palavras-Chave #Física de materiales
Tipo

info:eu-repo/semantics/article

PeerReviewed