973 resultados para spent layers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report the in-plane and cross-plane measurements of the thermal diffusivity of double epitaxial layers of n-type GaAs doped with various concentrations of Si and a p-type Be-doped GaAs layer grown on a GaAs substrate by the molecular beam epitaxial method, using the laser-induced nondestructive photothermal deflection technique. The thermal diffusivity value is evaluated from the slope of the graph of the phase of the photothermal deflection signal as a function of pump-probe offset. Analysis of the data shows that the cross-plane thermal diffusivity is less than that of the in-plane thermal diffusivity. It is also seen that the doping concentration has a great influence on the thermal diffusivity value. Measurement of p-type Be-doped samples shows that the nature of the dopant also influences the effective thermal diffusivity value. The results are interpreted in terms of a phonon-assisted heat transfer mechanism and the various scattering process involved in the propagation of phonons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report the in-plane and cross-plane measurements of the thermal diffusivity of double epitaxial layers of n-type GaAs doped with various concentrations of Si and a p-type Be-doped GaAs layer grown on a GaAs substrate by the molecular beam epitaxial method, using the laser-induced nondestructive photothermal deflection technique. The thermal diffusivity value is evaluated from the slope of the graph of the phase of the photothermal deflection signal as a function of pump-probe offset. Analysis of the data shows that the cross-plane thermal diffusivity is less than that of the in-plane thermal diffusivity. It is also seen that the doping concentration has a great influence on the thermal diffusivity value. Measurement of p-type Be-doped samples shows that the nature of the dopant also influences the effective thermal diffusivity value. The results are interpreted in terms of a phonon-assisted heat transfer mechanism and the various scattering process involved in the propagation of phonons

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report the in-plane and cross-plane measurements of the thermal diffusivity of double epitaxial layers of n-type GaAs doped with various concentrations of Si and a p-type Be-doped GaAs layer grown on a GaAs substrate by the molecular beam epitaxial method, using the laser-induced nondestructive photothermal deflection technique. The thermal diffusivity value is evaluated from the slope of the graph of the phase of the photothermal deflection signal as a function of pump-probe offset. Analysis of the data shows that the cross-plane thermal diffusivity is less than that of the in-plane thermal diffusivity. It is also seen that the doping concentration has a great influence on the thermal diffusivity value. Measurement of p-type Be-doped samples shows that the nature of the dopant also influences the effective thermal diffusivity value. The results are interpreted in terms of a phonon-assisted heat transfer mechanism and the various scattering process involved in the propagation of phonons

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photothermal beam deflection studies were carried out with GaAs epitaxial double layers grown on semi-insulating GaAs substrates. The impurity densities in thin epitaxial layers were found to influence the effective thermal diffusivity of the entire structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a photoacoustic (PA) study of the thermal and transport properties of a GaAs epitaxial layer doped with Si at varying doping concentration, grown on GaAs substrate by molecular beam epitaxy. The data are analyzed on the basis of Rosencwaig and Gersho’s theory of the PA effect. The amplitude of the PA signal gives information about various heat generation mechanisms in semiconductors. The experimental data obtained from the measurement of the PA signal as a function of modulation frequency in a heat transmission configuration were fitted with the phase of PA signal obtained from the theoretical model evaluated by considering four parameters—viz., thermal diffusivity, diffusion coefficient, nonradiative recombination time, and surface recombination velocity—as adjustable parameters. It is seen from the analysis that the photoacoustic technique is sensitive to the changes in the surface states depend on the doping concentration. The study demonstrates the effectiveness of the photoacoustic technique as a noninvasive and nondestructive method to measure and evaluate the thermal and transport properties of epitaxial layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoacoustic technique under heat transmission configuration is used to determine the effect of doping on both the thermal and transport properties of p- and n-type GaAs epitaxial layers grown on GaAs substrate by the molecular beam epitaxial method. Analysis of the data is made on the basis of the theoretical model of Rosencwaig and Gersho. Thermal and transport properties of the epitaxial layers are found by fitting the phase of the experimentally obtained photoacoustic signal with that of the theoretical model. It is observed that both the thermal and transport properties, i.e. thermal diffusivity, diffusion coefficient, surface recombination velocity and nonradiative recombination time, depend on the type of doping in the epitaxial layer. The results clearly show that the photoacoustic technique using heat transmission configuration is an excellent tool to study the thermal and transport properties of epitaxial layers under different doping conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercially, Pleurotus spp. of mushroom are cultivated in bags. After mushroom cultivation, spent substrate remains as residual material. Proper recycling of spent substrate is beneficial for our economy. Spent substrate can be utilized for various other value added purposes through the proper knowledge of its components. Composition of various components depends on the activity of extracellular enzymes in the spent substrate. The present study was conducted to know the enzyme profile of some major extracellular enzymes - cellulase, hemicellulase (xylanase), pectinase and ligninase (lignin peroxidase and laccase) and to estimate cellulose, hemicellulose, pectin and lignin in the substrate. The use of spent substrate as a source of fibre and ethanol, and in the biodegradation of phenol by Pleurotus spp. was also investigated

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arabian Sea is an area of complex air-sea interaction processes with seasonal reversing monsoons. The associated thermohaline variability in the upper layers appears to control the large scale monsoon flow which is not yet completely understood. The variability in the thermohaline fields is known to occur in temporal domain ranging from intra-diurnal to inter-annual time scales and on spatial domains of few tens of kilometers to few thousands of kilometers. In the Arabian Sea though the surface temperature was routinely measured by both conventional measurements and satellites, the corresponding information on the subsurface thermohaline field is very sparse due to the lack cw adequate measurements. In such cases the numerical models offer promise in providing information on the subsurface features given an initial thermohaline field and surface heat flux boundary conditions. This thesis is an outcome of investigations carried out on the various aspects of the thermohaline variability on different time scales. In addition to the description of the mean annual cycle. the one dimensional numerical models of Miller (1976) and Price et a1 (1986) are utilised to simulate the observed mixed layer characteristics at selected locations in the Arabian Sea on time scales ranging from intra-diurnal to synoptic scales under variable atmospheric forcing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis deals with the study of super conducting properties of layered cuprates within the frame work of a modified Lawrence-Doniach (LD) model. The thesis is organized in seven chapters. Chapter I is a survey of the phenomena and theories of conventional superconductivity which can serve as a springboard for launching the study of the new class of oxide superconductors and it also includes a chronological description of the efforts made to overcome the temperature barrier. Chapter II deals with the structure and properties of the copper oxide superconductors and also the experimental constraints on the theories of high te:::nperature superconductivity. A modified Lawrence-Doniach type of phenomenological model which forms the basis of the presnt study is also discussed. In chapter III~ the temperature dependence of the upper critical field both parallel and perpendicular to the layers is determined and the results are compared with d.c. magnetization measurements on different superconducting compoilllds. The temperature and angular dependence of the lower critical field both parallel and perpendicular to the layers is also discussed. Chapters IV, V and VI deal with thermal fluctuation effects on superconducting properties. Fluctuation specific heat is studied in chapter IV. Paraconductivity both parallel and perpendicular to the layers is discussed in chapter V. Fluctuation diamagnetism is dealt with in chapter VI. Dimensional cross over in the fluctuation regime of all these quantities is also discussed. Chapter VII gives a summary of the results and the conclusions arrived at.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SnS thin films were prepared using automated chemical spray pyrolysis (CSP) technique. Single-phase, p-type, stoichiometric, SnS films with direct band gap of 1.33 eV and having very high absorption coefficient (N105/cm) were deposited at substrate temperature of 375 °C. The role of substrate temperature in determining the optoelectronic and structural properties of SnS films was established and concentration ratios of anionic and cationic precursor solutions were optimized. n-type SnS samples were also prepared using CSP technique at the same substrate temperature of 375 °C, which facilitates sequential deposition of SnS homojunction. A comprehensive analysis of both types of films was done using x-ray diffraction, energy dispersive x-ray analysis, scanning electron microscopy, atomic force microscopy, optical absorption and electrical measurements. Deposition temperatures required for growth of other binary sulfide phases of tin such as SnS2, Sn2S3 were also determined

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spent substrate, the residual material of mushroom cultivation, causes disposal problems for cultivators. Currently the spent substrate of different mushrooms is used mainly for composting. Edible mushrooms of Pleurotus sp. can grow on a wide range of lignocellulosic substrates. In the present study, Pleurotus eous was grown on paddy straw and the spent substrate was used for the production of ethanol. Lignocellulosic biomass cannot be saccharified by enzymes to high yield of ethanol without pretreatment. The root cause for the recalcitrance of lignocellulosic biomass such as paddy straw is the presence of lignin and hemicelluloses on the surface of cellulose. They form a barrier and prevent cellulase from accessing the cellulose in the substrate. In the untreated paddy straw, the amount of hemicelluloses and lignin (in % dry weight) were 20.30 and 20.34 respectively and the total reducing sugar was estimated to be 5.40 mg/g. Extracellular xylanase and ligninases of P. eous could reduce the amount of hemicelluloses and lignin to 16 and 11(% dry weight) respectively, by 21st day of cultivation. Growth of mushroom brought a seven fold increase in the total reducing sugar yield (39.20 mg/g) and six fold increase in the production of ethanol (6.48 g/L) after 48hrs of fermentation, when compared to untreated paddy straw

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenol is an aromatic hydrocarbon which exists as a colorless or white solid in its pure state. Over the past several decades, there is growing concern about wide spread contamination of surface and ground water by phenol, due to rapid development of chemical and petrochemical industries. Phenol affects aquatic life even at relatively low concentration (5-25mg/L). Treatment for removal of phenol includes chemical as well as biological processes. Studies show that ligninases such as Lignin Peroxidase and Laccase, produced by Pleurotus sp., can degrade phenol. Spent substrate of Pleurotus mushrooms consists of ligninases. Present work was to investigate the potential of spent substrate of edible mushroom P. ostreatus for biodegradation of phenol. P. ostreatus was cultivated on paddy straw. After harvest, spent substrate was utilized for phenol degradation. According to the enzyme profile of two ligninases present in the spent substrate of P. ostreatus, maximum specific activity for Laccase was observed in 35 day old spent substrate and LiP activity was maximum in 56 day old spent substrate, which together contributed significantly for removal of phenol. Spent substrate of 35th and 56th day were each incubated with phenol sample (1:1w/v) for one day, which resulted in degradation of phenol by 48% and 45% respectively. From these results it appears that, spent substrate of P. ostreatus can be used effectively to remove phenol from industrial effluents

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We deal with the numerical solution of heat conduction problems featuring steep gradients. In order to solve the associated partial differential equation a finite volume technique is used and unstructured grids are employed. A discrete maximum principle for triangulations of a Delaunay type is developed. To capture thin boundary layers incorporating steep gradients an anisotropic mesh adaptation technique is implemented. Computational tests are performed for an academic problem where the exact solution is known as well as for a real world problem of a computer simulation of the thermoregulation of premature infants.