867 resultados para species distribution models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims of this study were (1) to assess the spatial distribution of orchid species richness in New Guinea, and (2) to examine patterns of species turnover in the orchid community through phytogeographical regionalization. We aimed to achieve these goals using botanical collection records, species distribution models (SDMs) and partitioning around medoids (PAM) clustering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RESUMEN El apoyo a la selección de especies a la restauración de la vegetación en España en los últimos 40 años se ha basado fundamentalmente en modelos de distribución de especies, también llamados modelos de nicho ecológico, que estiman la probabilidad de presencia de las especies en función de las condiciones del medio físico (clima, suelo, etc.). Con esta tesis se ha intentado contribuir a la mejora de la capacidad predictiva de los modelos introduciendo algunas propuestas metodológicas adaptadas a los datos disponibles actualmente en España y enfocadas al uso de los modelos en la selección de especies. No siempre se dispone de datos a una resolución espacial adecuada para la escala de los proyectos de restauración de la vegetación. Sin embrago es habitual contar con datos de baja resolución espacial para casi todas las especies vegetales presentes en España. Se propone un método de recalibración que actualiza un modelo de regresión logística de baja resolución espacial con una nueva muestra de alta resolución espacial. El método permite obtener predicciones de calidad aceptable con muestras relativamente pequeñas (25 presencias de la especie) frente a las muestras mucho mayores (más de 100 presencias) que requería una estrategia de modelización convencional que no usara el modelo previo. La selección del método estadístico puede influir decisivamente en la capacidad predictiva de los modelos y por esa razón la comparación de métodos ha recibido mucha atención en la última década. Los estudios previos consideraban a la regresión logística como un método inferior a técnicas más modernas como las de máxima entropía. Los resultados de la tesis demuestran que esa diferencia observada se debe a que los modelos de máxima entropía incluyen técnicas de regularización y la versión de la regresión logística usada en las comparaciones no. Una vez incorporada la regularización a la regresión logística usando penalización, las diferencias en cuanto a capacidad predictiva desaparecen. La regresión logística penalizada es, por tanto, una alternativa más para el ajuste de modelos de distribución de especies y está a la altura de los métodos modernos con mejor capacidad predictiva como los de máxima entropía. A menudo, los modelos de distribución de especies no incluyen variables relativas al suelo debido a que no es habitual que se disponga de mediciones directas de sus propiedades físicas o químicas. La incorporación de datos de baja resolución espacial proveniente de mapas de suelo nacionales o continentales podría ser una alternativa. Los resultados de esta tesis sugieren que los modelos de distribución de especies de alta resolución espacial mejoran de forma ligera pero estadísticamente significativa su capacidad predictiva cuando se incorporan variables relativas al suelo procedente de mapas de baja resolución espacial. La validación es una de las etapas fundamentales del desarrollo de cualquier modelo empírico como los modelos de distribución de especies. Lo habitual es validar los modelos evaluando su capacidad predictiva especie a especie, es decir, comparando en un conjunto de localidades la presencia o ausencia observada de la especie con las predicciones del modelo. Este tipo de evaluación no responde a una cuestión clave en la restauración de la vegetación ¿cuales son las n especies más idóneas para el lugar a restaurar? Se ha propuesto un método de evaluación de modelos adaptado a esta cuestión que consiste en estimar la capacidad de un conjunto de modelos para discriminar entre las especies presentes y ausentes de un lugar concreto. El método se ha aplicado con éxito a la validación de 188 modelos de distribución de especies leñosas orientados a la selección de especies para la restauración de la vegetación en España. Las mejoras metodológicas propuestas permiten mejorar la capacidad predictiva de los modelos de distribución de especies aplicados a la selección de especies en la restauración de la vegetación y también permiten ampliar el número de especies para las que se puede contar con un modelo que apoye la toma de decisiones. SUMMARY During the last 40 years, decision support tools for plant species selection in ecological restoration in Spain have been based on species distribution models (also called ecological niche models), that estimate the probability of occurrence of the species as a function of environmental predictors (e.g., climate, soil). In this Thesis some methodological improvements are proposed to contribute to a better predictive performance of such models, given the current data available in Spain and focusing in the application of the models to selection of species for ecological restoration. Fine grained species distribution data are required to train models to be used at the scale of the ecological restoration projects, but this kind of data are not always available for every species. On the other hand, coarse grained data are available for almost every species in Spain. A recalibration method is proposed that updates a coarse grained logistic regression model using a new fine grained updating sample. The method allows obtaining acceptable predictive performance with reasonably small updating sample (25 occurrences of the species), in contrast with the much larger samples (more than 100 occurrences) required for a conventional modeling approach that discards the coarse grained data. The choice of the statistical method may have a dramatic effect on model performance, therefore comparisons of methods have received much interest in the last decade. Previous studies have shown a poorer performance of the logistic regression compared to novel methods like maximum entropy models. The results of this Thesis show that the observed difference is caused by the fact that maximum entropy models include regularization techniques and the versions of logistic regression compared do not. Once regularization has been added to the logistic regression using a penalization procedure, the differences in model performance disappear. Therefore, penalized logistic regression may be considered one of the best performing methods to model species distributions. Usually, species distribution models do not consider soil related predictors because direct measurements of the chemical or physical properties are often lacking. The inclusion of coarse grained soil data from national or continental soil maps could be a reasonable alternative. The results of this Thesis suggest that the performance of the models slightly increase after including soil predictors form coarse grained soil maps. Model validation is a key stage of the development of empirical models, such as species distribution models. The usual way of validating is based on the evaluation of model performance for each species separately, i.e., comparing observed species presences or absence to predicted probabilities in a set of sites. This kind of evaluation is not informative for a common question in ecological restoration projects: which n species are the most suitable for the environment of the site to be restored? A method has been proposed to address this question that estimates the ability of a set of models to discriminate among present and absent species in a evaluation site. The method has been successfully applied to the validation of 188 species distribution models used to support decisions on species selection for ecological restoration in Spain. The proposed methodological approaches improve the predictive performance of the predictive models applied to species selection in ecological restoration and increase the number of species for which a model that supports decisions can be fitted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O lobo-guará é uma espécie de ampla distribuição na América do Sul, tendo no Brasil sua maior área de ocorrência. No entanto, as modificações das áreas naturais principalmente destinadas à agropecuária tornam a espécie vulnerável à extinção. A investigação objetivou conhecer em larga escala a área de distribuição potencial gerada por atributos ambientais favoráveis e áreas adequadas à sua ocorrência nos biomas brasileiros e investigar como a espécie responde à estrutura da paisagem, avaliando os efeitos de ambientes modificados pelo homem na sua ecologia espacial, nos padrões de atividade e na movimentação. Modelos de distribuição de espécie foram gerados pelo Maxent, utilizando uma base de pontos de localização de presença a partir de 2000 para o Cerrado (Ce), Pantanal (Pa), Mata Atlântica (MA) e Pampas (Pp) e um conjunto de onze variáveis ambientais não correlacionadas (topográficas, climáticas e paisagísticas). Para análises de ecologia espacial, das atividades e de movimentação, utilizou-se localizações de telemetria (GPS) de animais habitantes de áreas protegidas (AP), e indivíduos em paisagens modificados (AM). Análises de áreas de vida (AV) foram realizadas utilizando o estimador AKDE e associadas com classificação da paisagem local. Os modelos de distribuição do lobo-guará apresentaram uma área de distribuição potencial de 78% do total dos biomas. Apesar de possuírem grandes proporções de áreas adequadas (Ce, 90%; Pa, 93%; MA, 65% e Pp, 6%), somente um pequeno percentual (4,4% do Ce e 4,7% da MA) possui adequabilidade ambiental acima de 50%. Dos atributos que favorecem sua presença, a altitude (para todos os biomas), a precipitação (Ce e Pa), diferenças de temperatura e uso e cobertura do solo (Ma e Pp) foram os mais importantes. Em nível local, animais apresentaram média de AV de 90Km2 em AP e 41Km2 em AM, uma diferença significativa (p<0,01) com áreas diretamente proporcionais ao percentual de áreas naturais na paisagem. Ainda, apesar dos padrões regulares de atividade não mostrarem grandes mudanças, o período de repouso foi significativamente maior (p<0,01) entre os animais AM (46% do dia) que em animais AP (25% do dia). Lobos-guarás de AP e AM não apresentaram grandes diferenças no deslocamento diário com média geral de 14km caminhados por dia, com comprimentos de passos de 1Km. Diferenças no comprimento de passo foram relacionadas à composição da diversidade de contato de classes da paisagem com a proporção de ambientes naturais no passo (quanto maior as variáveis, maior o passo). Passos menores refletem menor persistência de movimento interferindo no deslocamento diário. Com os resultados desse estudo identificou-se a MA e Pa muito importantes, mas o Ce como bioma mais adequado à espécie. Foram encontrados indícios de que a estrutura de suas AV, o uso da paisagem, as atividades e movimentação são afetados pela paisagem modificada. Isso pode comprometer a viabilidade populacional, interferindo na presença em uma área e refletindo no seu potencial de distribuição. As estratégias de manejo de uso do solo, e a recuperação e conexão de áreas adequadas são urgentes e necessárias para que o lobo-guará permaneça presente e funcional nas paisagens dos biomas brasileiros.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hoy en día es común estudiar los patrones globales de biodiversidad a partir de las predicciones generadas por diferentes modelos de nicho ecológico. Habitualmente, estos modelos se calibran con datos procedentes de bases de datos de libre acceso (e.g. GBIF). Sin embargo, a pesar de la facilidad de descarga y de la accesibilidad de los datos, la información almacenada sobre las localidades donde están presentes las especies suele tener sesgos y errores. Estos problemas en los datos de calibración pueden modificar drásticamente las predicciones de los modelos y con ello pueden enmascarar los patrones macroecológicos reales. El objetivo de este trabajo es investigar qué métodos producen resultados más precisos cuando los datos de calibración incluyen sesgos y cuáles producen mejores resultados cuando los datos de calibración tienen, además de sesgos, errores. Para ello creado una especie virtual, hemos proyectado su distribución en la península ibérica, hemos muestreado su distribución de manera sesgada y hemos calibrado dos tipos de modelos de distribución (Bioclim y Maxent) con muestras de distintos tamaños. Nuestros resultados indican que cuando los datos sólo están sesgados, los resultados de Bioclim son mejores que los de Maxent. Sin embargo, Bioclim es extremadamente sensible a la presencia de errores en los datos de calibración. En estas situaciones, el comportamiento de Maxent es mucho más robusto y las predicciones que proporciona son más ajustadas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine spatial planning and ecological research call for high-resolution species distribution data. However, those data are still not available for most marine large vertebrates. The dynamic nature of oceanographic processes and the wide-ranging behavior of many marine vertebrates create further difficulties, as distribution data must incorporate both the spatial and temporal dimensions. Cetaceans play an essential role in structuring and maintaining marine ecosystems and face increasing threats from human activities. The Azores holds a high diversity of cetaceans but the information about spatial and temporal patterns of distribution for this marine megafauna group in the region is still very limited. To tackle this issue, we created monthly predictive cetacean distribution maps for spring and summer months, using data collected by the Azores Fisheries Observer Programme between 2004 and 2009. We then combined the individual predictive maps to obtain species richness maps for the same period. Our results reflect a great heterogeneity in distribution among species and within species among different months. This heterogeneity reflects a contrasting influence of oceanographic processes on the distribution of cetacean species. However, some persistent areas of increased species richness could also be identified from our results. We argue that policies aimed at effectively protecting cetaceans and their habitats must include the principle of dynamic ocean management coupled with other area-based management such as marine spatial planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgements This work received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (Grant reference HR09011) and contributing institutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgements This work received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (Grant reference HR09011) and contributing institutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work represents an original contribution to the methodology for ecosystem models' development as well as the rst attempt of an end-to-end (E2E) model of the Northern Humboldt Current Ecosystem (NHCE). The main purpose of the developed model is to build a tool for ecosystem-based management and decision making, reason why the credibility of the model is essential, and this can be assessed through confrontation to data. Additionally, the NHCE exhibits a high climatic and oceanographic variability at several scales, the major source of interannual variability being the interruption of the upwelling seasonality by the El Niño Southern Oscillation, which has direct e ects on larval survival and sh recruitment success. Fishing activity can also be highly variable, depending on the abundance and accessibility of the main shery resources. This context brings the two main methodological questions addressed in this thesis, through the development of an end-to-end model coupling the high trophic level model OSMOSE to the hydrodynamics and biogeochemical model ROMS-PISCES: i) how to calibrate ecosystem models using time series data and ii) how to incorporate the impact of the interannual variability of the environment and shing. First, this thesis highlights some issues related to the confrontation of complex ecosystem models to data and proposes a methodology for a sequential multi-phases calibration of ecosystem models. We propose two criteria to classify the parameters of a model: the model dependency and the time variability of the parameters. Then, these criteria along with the availability of approximate initial estimates are used as decision rules to determine which parameters need to be estimated, and their precedence order in the sequential calibration process. Additionally, a new Evolutionary Algorithm designed for the calibration of stochastic models (e.g Individual Based Model) and optimized for maximum likelihood estimation has been developed and applied to the calibration of the OSMOSE model to time series data. The environmental variability is explicit in the model: the ROMS-PISCES model forces the OSMOSE model and drives potential bottom-up e ects up the foodweb through plankton and sh trophic interactions, as well as through changes in the spatial distribution of sh. The latter e ect was taken into account using presence/ absence species distribution models which are traditionally assessed through a confusion matrix and the statistical metrics associated to it. However, when considering the prediction of the habitat against time, the variability in the spatial distribution of the habitat can be summarized and validated using the emerging patterns from the shape of the spatial distributions. We modeled the potential habitat of the main species of the Humboldt Current Ecosystem using several sources of information ( sheries, scienti c surveys and satellite monitoring of vessels) jointly with environmental data from remote sensing and in situ observations, from 1992 to 2008. The potential habitat was predicted over the study period with monthly resolution, and the model was validated using quantitative and qualitative information of the system using a pattern oriented approach. The nal ROMS-PISCES-OSMOSE E2E ecosystem model for the NHCE was calibrated using our evolutionary algorithm and a likelihood approach to t monthly time series data of landings, abundance indices and catch at length distributions from 1992 to 2008. To conclude, some potential applications of the model for shery management are presented and their limitations and perspectives discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested whether the distribution of three common springtail species (Gressittacantha terranova, Gomphiocephalus hodgsoni and Friesea grisea) in Victoria Land (Antarctica) could be modelled as a function of latitude, longitude, altitude and distance from the sea.

Victoria Land, Ross Dependency, Antarctica.

Generalized linear models were constructed using species presence/absence data relative to geographical features (latitude, longitude, altitude, distance from sea) across the species' entire ranges. Model results were then integrated with the known phylogeography of each species and hypotheses were generated on the role of climate as a major driver of Antarctic springtail distribution.

Based on model selection using Akaike's information criterion, the species' distributions were: hump-shaped relative to longitude and monotonic with altitude for Gressittacantha terranova; hump-shaped relative to latitude and monotonic with altitude for Gomphiocephalus hodgsoni; and hump-shaped relative to longitude and monotonic with latitude, altitude and distance from the sea for Friesea grisea.

No single distributional pattern was shared by the three species. While distributions were partially a response to climatic spatial clines, the patterns observed strongly suggest that past geological events have influenced the observed distributions. Accordingly, present-day spatial patterns are likely to have arisen from the interaction of historical and environmental drivers. Future studies will need to integrate a range of spatial and temporal scales to further quantify their respective roles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed knowledge of waterfowl abundance and distribution across Canada is lacking, which limits our ability to effectively conserve and manage their populations. We used 15 years of data from an aerial transect survey to model the abundance of 17 species or species groups of ducks within southern and boreal Canada. We included 78 climatic, hydrological, and landscape variables in Boosted Regression Tree models, allowing flexible response curves and multiway interactions among variables. We assessed predictive performance of the models using four metrics and calculated uncertainty as the coefficient of variation of predictions across 20 replicate models. Maps of predicted relative abundance were generated from resulting models, and they largely match spatial patterns evident in the transect data. We observed two main distribution patterns: a concentrated prairie-parkland distribution and a more dispersed pan-Canadian distribution. These patterns were congruent with the relative importance of predictor variables and model evaluation statistics among the two groups of distributions. Most species had a hydrological variable as the most important predictor, although the specific hydrological variable differed somewhat among species. In some cases, important variables had clear ecological interpretations, but in some instances, e.g., topographic roughness, they may simply reflect chance correlations between species distributions and environmental variables identified by the model-building process. Given the performance of our models, we suggest that the resulting prediction maps can be used in future research and to guide conservation activities, particularly within the bounds of the survey area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patterns of spatio-temporal distribution of Brachyura are determined by the interaction among life history traits, inter and intraspecific relationships, as well as by the variation of abiotic factors. This study aimed to characterize patterns of spatio-temporal distribution of Persephona lichtensteinii, Persephona mediterranea and Persephona punctata in two regions of the northern coast of Sao Paulo State, southeastern region of Brazil. Collections were done monthly from July 2001 to June 2003 in Caraguatatuba and Ubatuba, using a shrimp fishery boat equipped with double-rig nets. The patterns of species distribution were tested by means of redundancy analysis (RDA) and generalized linear mixed models (GLMM) in relation to the recorded environmental factors (BT: bottom temperature, BS: bottom salinity, OM: organic matter and granulometry (Phi)). The most influent environmental factor over the species distribution was the Phi, and the ascendant order of influence was P. lichtensteinii, P. punctata and P. mediterranea. The greater abundance of P. mediterranea showed a conservative pattern of distribution for the genus in the sampled region. The greater occurrence of P. punctata and P. lichtensteinii, in distinct transects than those occupied by P. mediterranea, seems to be a strategy to avoid competition among congeneric species, which is related to the substratum specificity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Species selection for forest restoration is often supported by expert knowledge on local distribution patterns of native tree species. This approach is not applicable to largely deforested regions unless enough data on pre-human tree species distribution is available. In such regions, ecological niche models may provide essential information to support species selection in the framework of forest restoration planning. In this study we used ecological niche models to predict habitat suitability for native tree species in "Tierra de Campos" region, an almost totally deforested area of the Duero Basin (Spain). Previously available models provide habitat suitability predictions for dominant native tree species, but including non-dominant tree species in the forest restoration planning may be desirable to promote biodiversity, specially in largely deforested areas were near seed sources are not expected. We used the Forest Map of Spain as species occurrence data source to maximize the number of modeled tree species. Penalized logistic regression was used to train models using climate and lithological predictors. Using model predictions a set of tools were developed to support species selection in forest restoration planning. Model predictions were used to build ordered lists of suitable species for each cell of the study area. The suitable species lists were summarized drawing maps that showed the two most suitable species for each cell. Additionally, potential distribution maps of the suitable species for the study area were drawn. For a scenario with two dominant species, the models predicted a mixed forest (Quercus ilex and a coniferous tree species) for almost one half of the study area. According to the models, 22 non-dominant native tree species are suitable for the study area, with up to six suitable species per cell. The model predictions pointed to Crataegus monogyna, Juniperus communis, J.oxycedrus and J.phoenicea as the most suitable non-dominant native tree species in the study area. Our results encourage further use of ecological niche models for forest restoration planning in largely deforested regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distribution models are used increasingly for species conservation assessments over extensive areas, but the spatial resolution of the modeled data and, consequently, of the predictions generated directly from these models are usually too coarse for local conservation applications. Comprehensive distribution data at finer spatial resolution, however, require a level of sampling that is impractical for most species and regions. Models can be downscaled to predict distribution at finer resolutions, but this increases uncertainty because the predictive ability of models is not necessarily consistent beyond their original scale. We analyzed the performance of downscaled, previously published models of environmental favorability (a generalized linear modeling technique) for a restricted endemic insectivore, the Iberian desman (Galemys pyrenaicus), and a more widespread carnivore, the Eurasian otter ( Lutra lutra), in the Iberian Peninsula. The models, built from presence–absence data at 10 × 10 km resolution, were extrapolated to a resolution 100 times finer (1 × 1 km). We compared downscaled predictions of environmental quality for the two species with published data on local observations and on important conservation sites proposed by experts. Predictions were significantly related to observed presence or absence of species and to expert selection of sampling sites and important conservation sites. Our results suggest the potential usefulness of downscaled projections of environmental quality as a proxy for expensive and time-consuming field studies when the field studies are not feasible. This method may be valid for other similar species if coarse-resolution distribution data are available to define high-quality areas at a scale that is practical for the application of concrete conservation measures

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Species distribution and ecological niche models are increasingly used in biodiversity management and conservation. However, one thing that is important but rarely done is to follow up on the predictive performance of these models over time, to check if their predictions are fulfilled and maintain accuracy, or if they apply only to the set in which they were produced. In 2003, a distribution model of the Eurasian otter (Lutra lutra) in Spain was published, based on the results of a country-wide otter survey published in 1998. This model was built with logistic regression of otter presence-absence in UTM 10 km2 cells on a diverse set of environmental, human and spatial variables, selected according to statistical criteria. Here we evaluate this model against the results of the most recent otter survey, carried out a decade later and after a significant expansion of the otter distribution area in this country. Despite the time elapsed and the evident changes in this speciesdistribution, the model maintained a good predictive capacity, considering both discrimination and calibration measures. Otter distribution did not expand randomly or simply towards vicinity areas,m but specifically towards the areas predicted as most favourable by the model based on data from 10 years before. This corroborates the utility of predictive distribution models, at least in the medium term and when they are made with robust methods and relevant predictor variables.