737 resultados para soft computing


Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is controversy regarding the use of the similarity functions proposed in the literature to compare generalized trapezoidal fuzzy numbers since conflicting similarity values are sometimes output for the same pair of fuzzy numbers. In this paper we propose a similarity function aimed at establishing a consensus. It accounts for the different approaches of all the similarity functions. It also has better properties and can easily incorporate new parameters for future improvements. The analysis is carried out on the basis of a large and representative set of pairs of trapezoidal fuzzy numbers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Virtual Worlds Generator is a grammatical model that is proposed to define virtual worlds. It integrates the diversity of sensors and interaction devices, multimodality and a virtual simulation system. Its grammar allows the definition and abstraction in symbols strings of the scenes of the virtual world, independently of the hardware that is used to represent the world or to interact with it. A case study is presented to explain how to use the proposed model to formalize a robot navigation system with multimodal perception and a hybrid control scheme of the robot.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modern compilers present a great and ever increasing number of options which can modify the features and behavior of a compiled program. Many of these options are often wasted due to the required comprehensive knowledge about both the underlying architecture and the internal processes of the compiler. In this context, it is usual, not having a single design goal but a more complex set of objectives. In addition, the dependencies between different goals are difficult to be a priori inferred. This paper proposes a strategy for tuning the compilation of any given application. This is accomplished by using an automatic variation of the compilation options by means of multi-objective optimization and evolutionary computation commanded by the NSGA-II algorithm. This allows finding compilation options that simultaneously optimize different objectives. The advantages of our proposal are illustrated by means of a case study based on the well-known Apache web server. Our strategy has demonstrated an ability to find improvements up to 7.5% and up to 27% in context switches and L2 cache misses, respectively, and also discovers the most important bottlenecks involved in the application performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plane model extraction from three-dimensional point clouds is a necessary step in many different applications such as planar object reconstruction, indoor mapping and indoor localization. Different RANdom SAmple Consensus (RANSAC)-based methods have been proposed for this purpose in recent years. In this study, we propose a novel method-based on RANSAC called Multiplane Model Estimation, which can estimate multiple plane models simultaneously from a noisy point cloud using the knowledge extracted from a scene (or an object) in order to reconstruct it accurately. This method comprises two steps: first, it clusters the data into planar faces that preserve some constraints defined by knowledge related to the object (e.g., the angles between faces); and second, the models of the planes are estimated based on these data using a novel multi-constraint RANSAC. We performed experiments in the clustering and RANSAC stages, which showed that the proposed method performed better than state-of-the-art methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we propose the use of the neural gas (NG), a neural network that uses an unsupervised Competitive Hebbian Learning (CHL) rule, to develop a reverse engineering process. This is a simple and accurate method to reconstruct objects from point clouds obtained from multiple overlapping views using low-cost sensors. In contrast to other methods that may need several stages that include downsampling, noise filtering and many other tasks, the NG automatically obtains the 3D model of the scanned objects. To demonstrate the validity of our proposal we tested our method with several models and performed a study of the neural network parameterization computing the quality of representation and also comparing results with other neural methods like growing neural gas and Kohonen maps or classical methods like Voxel Grid. We also reconstructed models acquired by low cost sensors that can be used in virtual and augmented reality environments for redesign or manipulation purposes. Since the NG algorithm has a strong computational cost we propose its acceleration. We have redesigned and implemented the NG learning algorithm to fit it onto Graphics Processing Units using CUDA. A speed-up of 180× faster is obtained compared to the sequential CPU version.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the performance of Gallager type error- correcting codes for Binary Symmetric Channels, where the code word comprises products of K bits selected from the original message and decoding is carried out utilizing a connectivity tensor with C connections per index. Shannon's bound for the channel capacity is recovered for large K and zero temperature when the code rate K/C is finite. Close to optimal error-correcting capability, with improved decoding properties is obtained for finite K and C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper explores the use of the optimization procedures in SAS/OR software with application to the ordered weight averaging (OWA) operators of decision-making units (DMUs). OWA was originally introduced by Yager (IEEE Trans Syst Man Cybern 18(1):183-190, 1988) has gained much interest among researchers, hence many applications such as in the areas of decision making, expert systems, data mining, approximate reasoning, fuzzy system and control have been proposed. On the other hand, the SAS is powerful software and it is capable of running various optimization tools such as linear and non-linear programming with all type of constraints. To facilitate the use of OWA operator by SAS users, a code was implemented. The SAS macro developed in this paper selects the criteria and alternatives from a SAS dataset and calculates a set of OWA weights. An example is given to illustrate the features of SAS/OWA software. © Springer-Verlag 2009.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Models at runtime can be defined as abstract representations of a system, including its structure and behaviour, which exist in tandem with the given system during the actual execution time of that system. Furthermore, these models should be causally connected to the system being modelled, offering a reflective capability. Significant advances have been made in recent years in applying this concept, most notably in adaptive systems. In this paper we argue that a similar approach can also be used to support the dynamic generation of software artefacts at execution time. An important area where this is relevant is the generation of software mediators to tackle the crucial problem of interoperability in distributed systems. We refer to this approach as emergent middleware, representing a fundamentally new approach to resolving interoperability problems in the complex distributed systems of today. In this context, the runtime models are used to capture meta-information about the underlying networked systems that need to interoperate, including their interfaces and additional knowledge about their associated behaviour. This is supplemented by ontological information to enable semantic reasoning. This paper focuses on this novel use of models at runtime, examining in detail the nature of such runtime models coupled with consideration of the supportive algorithms and tools that extract this knowledge and use it to synthesise the appropriate emergent middleware.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main purpose of the study is to develop an integrated framework for managing project risks by analyzing risk across project, work package and activity levels, and developing responses. Design/methodology/approach: The study first reviews the literature of various contemporary risk management frameworks in order to identify gaps in project risk management knowledge. Then it develops a conceptual risk management framework using combined analytic hierarchy process (AHP) and risk map for managing project risks. The proposed framework has then been applied to a 1500 km oil pipeline construction project in India in order to demonstrate its effectiveness. The concerned project stakeholders were involved through focus group discussions for applying the proposed risk management framework in the project under study. Findings: The combined AHP and risk map approach is very effective to manage project risks across project, work package and activity levels. The risk factors in project level are caused because of external forces such as business environment (e.g. customers, competitors, technological development, politics, socioeconomic environment). The risk factors in work package and activity levels are operational in nature and created due to internal causes such as lack of material and labor productivity, implementation issues, team ineffectiveness, etc. Practical implications: The suggested model can be applied to any complex project and helps manage risk throughout the project life cycle. Originality/value: Both business and operational risks constitute project risks. In one hand, the conventional project risk management frameworks emphasize on managing business risks and often ignore operational risks. On the other hand, the studies that deal with operational risk often do not link them with business risks. However, they need to be addressed in an integrated way as there are a few risks that affect only the specific level. Hence, this study bridges the gaps. © 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The intensity of global competition and ever-increasing economic uncertainties has led organizations to search for more efficient and effective ways to manage their business operations. Data envelopment analysis (DEA) has been widely used as a conceptually simple yet powerful tool for evaluating organizational productivity and performance. Fuzzy DEA (FDEA) is a promising extension of the conventional DEA proposed for dealing with imprecise and ambiguous data in performance measurement problems. This book is the first volume in the literature to present the state-of-the-art developments and applications of FDEA. It is designed for students, educators, researchers, consultants and practicing managers in business, industry, and government with a basic understanding of the DEA and fuzzy logic concepts.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Data envelopment analysis (DEA) is a methodology for measuring the relative efficiencies of a set of decision making units (DMUs) that use multiple inputs to produce multiple outputs. Crisp input and output data are fundamentally indispensable in conventional DEA. However, the observed values of the input and output data in real-world problems are sometimes imprecise or vague. Many researchers have proposed various fuzzy methods for dealing with the imprecise and ambiguous data in DEA. This chapter provides a taxonomy and review of the fuzzy DEA (FDEA) methods. We present a classification scheme with six categories, namely, the tolerance approach, the α-level based approach, the fuzzy ranking approach, the possibility approach, the fuzzy arithmetic, and the fuzzy random/type-2 fuzzy set. We discuss each classification scheme and group the FDEA papers published in the literature over the past 30 years. © 2014 Springer-Verlag Berlin Heidelberg.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To be competitive in contemporary turbulent environments, firms must be capable of processing huge amounts of information, and effectively convert it into actionable knowledge. This is particularly the case in the marketing context, where problems are also usually highly complex, unstructured and ill-defined. In recent years, the development of marketing management support systems has paralleled this evolution in informational problems faced by managers, leading to a growth in the study (and use) of artificial intelligence and soft computing methodologies. Here, we present and implement a novel intelligent system that incorporates fuzzy logic and genetic algorithms to operate in an unsupervised manner. This approach allows the discovery of interesting association rules, which can be linguistically interpreted, in large scale databases (KDD or Knowledge Discovery in Databases.) We then demonstrate its application to a distribution channel problem. It is shown how the proposed system is able to return a number of novel and potentially-interesting associations among variables. Thus, it is argued that our method has significant potential to improve the analysis of marketing and business databases in practice, especially in non-programmed decisional scenarios, as well as to assist scholarly researchers in their exploratory analysis. © 2013 Elsevier Inc.

Relevância:

60.00% 60.00%

Publicador: