985 resultados para social insects


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nesting biology and social behavior of the euglossine bee species Euglossa melanotricha was analyzed based on the monitoring of eight nests found in man-made cavities and transferred to observation boxes. Euglossa melanotricha females usually construct their nests in cavities in the ground, in buildings, or in mounds. In this study, we present new data on the nesting biology of E. melanotricha. The process of reactivation of nests was commonly observed with one to three females participating in the reactivation. The duration of the process of reactivation ranged from 10 to 78 days (n = 31) and were longer during the rainy season. Time spent (in days) for provisioning, oviposition and closing a single cell was higher in reactivations that occurred during the dry period. 151 emergences were observed (39 males and 112 females). 90 (80.3%) of the emerged females returned to the natal nest, but only 35(38.9%) remained and actively participated in the construction and provisioning of cells. The other 55 abandoned the nests after several days without performing any work in the nest. Matrifilial nest structure was regulated by dominance-subordinate aggressive behavior among females, where the dominant female laid almost all eggs. Task allocation was recognized by behavioral characteristics, namely, agonism and oophagy in cells oviposited by other females. Euglossa melanotricha is multivoltine and its nesting is asynchronous with respect to season. Our observations suggest a primitively eusocial organization. These observations of E. melanotricha provide valuable information for comparison with other species of Euglossa in an evolutionary context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Body size influences wing shape and associated muscles in flying animals which is a conspicuous phenomenon in insects, given their wide range in body size. Despite the significance of this, to date, no detailed study has been conducted across a group of species with similar biology allowing a look at specific relationship between body size and flying structures. Neotropical social vespids are a model group to study this problem as they are strong predators that rely heavily on flight while exhibiting a wide range in body size. In this paper we describe the variation in both wing shape, as wing planform, and mesosoma muscle size along the body size gradient of the Neotropical social wasps and discuss the potential factors affecting these changes. Analyses of 56 species were conducted using geometric morphometrics for the wings and lineal morphometrics for the body; independent contrast method regressions were used to correct for the phylogenetic effect. Smaller vespid species exhibit rounded wings, veins that are more concentrated in the proximal region, larger stigmata and the mesosoma is proportionally larger than in larger species. Meanwhile, larger species have more elongated wings, more distally extended venation, smaller stigmata and a proportionally smaller mesosoma. The differences in wing shape and other traits could be related to differences in flight demands caused by smaller and larger body sizes. Species around the extremes of body size distribution may invest more in flight muscle mass than species of intermediate sizes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fundamental problem in biology is understanding how and why things group together. Collective behavior is observed on all organismic levels - from cells and slime molds, to swarms of insects, flocks of birds, and schooling fish, and in mammals, including humans. The long-term goal of this research is to understand the functions and mechanisms underlying collective behavior in groups. This dissertation focuses on shoaling (aggregating) fish. Shoaling behaviors in fish confer foraging and anti-predator benefits through social cues from other individuals in the group. However, it is not fully understood what information individuals receive from one another or how this information is propagated throughout a group. It is also not fully understood how the environmental conditions and perturbations affect group behaviors. The specific research objective of this dissertation is to gain a better understanding of how certain social and environmental factors affect group behaviors in fish. I focus on two ecologically relevant decision-making behaviors: (i) rheotaxis, or orientation with respect to a flow, and (ii) startle response, a rapid response to a perceived threat. By integrating behavioral and engineering paradigms, I detail specifics of behavior in giant danio Devario aequipinnatus (McClelland 1893), and numerically analyze mathematical models that may be extended to group behavior for fish in general, and potentially other groups of animals as well. These models that predict behavior data, as well as generate additional, testable hypotheses. One of the primary goals of neuroethology is to study an organism's behavior in the context of evolution and ecology. Here, I focus on studying ecologically relevant behaviors in giant danio in order to better understand collective behavior in fish. The experiments in this dissertation provide contributions to fish ecology, collective behavior, and biologically-inspired robotics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowing when to compete and when to cooperate to maximize opportunities for equal access to activities and materials in groups is critical to children's social and cognitive development. The present study examined the individual (gender, social competence) and contextual factors (gender context) that may determine why some children are more successful than others. One hundred and fifty-six children (M age=6.5 years) were divided into 39 groups of four and videotaped while engaged in a task that required them to cooperate in order to view cartoons. Children within all groups were unfamiliar to one another. Groups varied in gender composition (all girls, all boys, or mixed-sex) and social competence (high vs. low). Group composition by gender interaction effects were found. Girls were most successful at gaining viewing time in same-sex groups, and least successful in mixed-sex groups. Conversely, boys were least successful in same-sex groups and most successful in mixed-sex groups. Similar results were also found at the group level of analysis; however, the way in which the resources were distributed differed as a function of group type. Same-sex girl groups were inequitable but efficient whereas same-sex boy groups were more equitable than mixed groups but inefficient compared to same-sex girl groups. Social competence did not influence children's behavior. The findings from the present study highlight the effect of gender context on cooperation and competition and the relevance of adopting an unfamiliar peer paradigm when investigating children's social behavior.