977 resultados para sinusoidal phase modulating interferometer
Resumo:
This paper enhances some concepts of the Instantaneous Complex Power Theory by analyzing the analytical expressions for voltages, currents and powers developed on a symmetrical RL three-phase system, during the transient caused by a sinusoidal voltage excitation. The powers delivered to an ideal inductor will be interpreted, allowing a deep insight in the power phenomenon by analyzing the voltages in each element of the circuit. The results can be applied to the understanding of non-linear systems subject to sinusoidal voltage excitation and distorted currents.
Resumo:
A quasi-sinusoidal linearly tunable OTA-C VCO built with triode-region transconductors is presented. Oscillation upon power-on is ensured by RHP poles associated with gate-drain capacitances of OTA input devices. Since the OTA nonlinearity stabilizes the amplitude, the oscillation frequency f0 is first-order independent of VDD, making the VCO adequate to mixed-mode designs. A range of simulations attests the theoretical analysis. As part of a DPLL, the VCO was prototyped on a 0.8μm CMOS process, occupying an area of 0.15mm2. Nominal f0 is 1MHz, with K VCo=8.4KHz/mV. Measured sensitivity to VDD is below 2.17, while phase noise is -86dBc at 100-KHz offset. The feasibility of the VCO for higher frequencies is verified by a redesign based on a 0.35μm CMOS process and VDD=3.3V, with a linear frequency-span of l3.2MHz - 61.5MHz.
Resumo:
This paper investigates the major similarities and discrepancies among three important current decompositions proposed for the interpretation of unbalanced and/or non linear three-phase four-wire power circuits. The considered approaches were the so-called FBD Theory, the pq-Theory and the CPT. Although the methods are based on different concepts, the results obtained under ideal conditions (sinusoidal and balanced signals) are very similar. The main differences appear in the presence of unbalanced and non linear load conditions. It will be demonstrated and discussed how the choice of the voltage referential and the return conductor impedance can influence in the resulting current components, as well as, the way of interpreting a power circuit with return conductor. Under linear unbalanced conditions, both FBD and pq-Theory suggest that the some current components contain a third-order harmonic. Besides, neither pq-Theory nor FBD method are able to provide accurate information for reactive current under unbalanced and distorted conditions, what can be done by means of the CPT. © 2009 IEEE.
Resumo:
This paper proposes a new methodology to control the power flow between a distributed generator (DG) and the electrical power distribution grid. It is used the droop voltage control to manage the active and reactive power. Through this control a sinusoidal voltage reference is generated to be tracked by voltage loop and this loop generates the current reference for the current loop. The proposed control introduces feed-forward states improving the control performance in order to obtain high quality for the current injected to the grid. The controllers were obtained through the linear matrix inequalities (LMI) using the D-stability analysis to allocate the closed-loop controller poles. Therefore, the results show quick transient response with low oscillations. Thus, this paper presents the proposed control technique, the main simulation results and a prototype with 1000VA was developed in the laboratory in order to demonstrate the feasibility of the proposed control. © 2012 IEEE.
Resumo:
This paper presents a practical experimentation for comparing reactive/non-active energy measures, considering three-phase four-wire non-sinusoidal and unbalanced circuits, involving five different commercial electronic meters. The experimentation set provides separately voltage and current generation, each one with any waveform involving up to fifty-first harmonic components, identically compared with acquisitions obtained from utility. The experimental accuracy is guaranteed by a class A power analyzer, according to IEC61000-4-30 standard. Some current and voltage combination profiles are presented and confronted with two different references of reactive/non-active calculation methodologies; instantaneous power theory and IEEE 1459-2010. The first methodology considers the instantaneous power theory, present into the advanced mathematical internal algorithm from WT3000 power analyzer, and the second methodology, accomplish with IEEE 1459-2010 standard, uses waveform voltage and current acquisition from WT3000 as input data for a virtual meter developed on Mathlab/Simulink software. © 2012 IEEE.
Resumo:
In this work we study two different spin-boson models. Such models are generalizations of the Dicke model, it means they describe systems of N identical two-level atoms coupled to a single-mode quantized bosonic field, assuming the rotating wave approximation. In the first model, we consider the wavelength of the bosonic field to be of the order of the linear dimension of the material composed of the atoms, therefore we consider the spatial sinusoidal form of the bosonic field. The second model is the Thompson model, where we consider the presence of phonons in the material composed of the atoms. We study finite temperature properties of the models using the path integral approach and functional methods. In the thermodynamic limit, N→∞, the systems exhibit phase transitions from normal to superradiant phase at some critical values of temperature and coupling constant. We find the asymptotic behavior of the partition functions and the collective spectrums of the systems in the normal and the superradiant phases. We observe that the collective spectrums have zero energy values in the superradiant phases, corresponding to the Goldstone mode associated to the continuous symmetry breaking of the models. Our analysis and results are valid in the limit of zero temperature β→∞, where the models exhibit quantum phase transitions. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
In order to investigate the effect on the aqueous solubility and release rate of sulfamerazine (SMR) as model drug, inclusion complexes with beta-cyclodextrin (beta CD), methyl-beta-cyclodextrin (M beta CD) and hydroxypropyl-beta-cyclodextrin (HP beta CD) and a binary system with meglumine (MEG) were developed. The formation of 1: 1 inclusion complexes of SMR with the CDs and a SMR: MEG binary system in solution and in solid state was revealed by phase solubility studies (PSS), nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), thermal analysis and X-Ray diffractometry (XRD) studies. The CDs solubilization of SMR could be improved by ionization of the drug molecule through pH adjustments. The higher apparent stability constants of SMR:CDs complexes were obtained in pH 2.00, demonstrating that CDs present more affinity for the unionized drug. The best approach for SMR solubility enhancement results from the combination of MEG and pH adjustment, with a 34-fold increment and a S-max of 54.8 mg/ml. The permeability of the drug was reduced due to the presence of beta CD, M beta CD, HP beta CD and MEG when used as solubilizers. The study then suggests interesting applications of CD or MEG complexes for modulating the release rate of SMR through semipermeable membranes.
Resumo:
Objectives: This report highlights phytoconstituents present in Cissus quadrangularis (CQ) extract and examines biphasic (proliferative and anti-proliferative) effects of its extract on bone cell proliferation, differentiation, mineralization, ROS generation, cell cycle progression and Runx2 gene expression in primary rat osteoblasts. Materials and methods: Phytoconstituents were identified using gas chromatography-mass spectroscopy (GC-MS). Osteoblasts were exposed to different concentrations (10-100g/ml) of CQ extract and cell proliferation and cell differentiation were investigated at different periods of time. Subsequently, intracellular ROS intensity, apoptosis and matrix mineralization of osteoblasts were evaluated. We performed flow cytometry for DNA content and real-time PCR for Runx2 gene expression analysis.Results: CQ extract's approximately 40 bioactive compounds of fatty acids, hydrocarbons, vitamins and steroidal derivatives were identified. Osteoblasts exposed to varying concentrations of extract exhibited biphasic variation in cell proliferation and differentiation as a function of dose and time. Moreover, lower concentrations (10-50g/ml) of extract slightly reduced ROS intensity, although they enhanced matrix mineralization, DNA content in S phase of the cell cycle, and levels of Runx2 expression. However, higher concentrations (75-100g/ml) considerably induced the ROS intensity and nuclear condensation in osteoblasts, while it reduced mineralization level, proportion of cells in S phase and Runx2 level of the osteogenic gene.Conclusions: These findings suggest that CQ extract revealed concentration-dependent biphasic effects, which would contribute notably to future assessment of pre-clinical efficacy and safety studies.
Resumo:
Synthetic-heterodyne demodulation is a useful technique for dynamic displacement and velocity detection in interferometric sensors, as it can provide an output signal that is immune to interferometric drift. With the advent of cost-effective, high-speed real-time signal-processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. In synthetic heterodyne, to obtain the actual dynamic displacement or vibration of the object under test requires knowledge of the interferometer visibility and also the argument of two Bessel functions. In this paper, a method is described for determining the former and setting the Bessel function argument to a set value, which ensures maximum sensitivity. Conventional synthetic-heterodyne demodulation requires the use of two in-phase local oscillators; however, the relative phase of these oscillators relative to the interferometric signal is unknown. It is shown that, by using two additional quadrature local oscillators, a demodulated signal can be obtained that is independent of this phase difference. The experimental interferometer is aMichelson configuration using a visible single-mode laser, whose current is sinusoidally modulated at a frequency of 20 kHz. The detected interferometer output is acquired using a 250 kHz analog-to-digital converter and processed in real time. The system is used to measure the displacement sensitivity frequency response and linearity of a piezoelectric mirror shifter over a range of 500 Hz to 10 kHz. The experimental results show good agreement with two data-obtained independent techniques: the signal coincidence and denominated n-commuted Pernick method.
Resumo:
Piezoelectric transducers are widely used in high-resolution positioning systems. This paper reports the experimental analysis of a novel piezoelectric flextensional actuator (PFA), which is designed by using the topology-optimization method through a low-cost homodyne Michelson interferometer. By applying the J(1) - J(4) method for signal demodulation, which provides a linear and direct measurement of dynamic optical phase shift independent of fading, the nanometric displacements of the PFA were determined. Linearity and frequency response of the PFA were evaluated up to 50 kHz. PFA calibration factor and amplification rate were determined for the PFA operating in the quasi-static regime. To confirm the observed frequencies of resonance, an impedance analyzer is also utilized to measure the magnitude and phase of the PFA admittance.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We report on the generation of tunable light around 400 nm by frequency-doubling ultrashort laser pulses whose spectral phase is modulated by a sum of sinusoidal functions. The linewidth of the ultraviolet band produced is narrower than 1 nm, in contrast to the 12 nm linewidth of the non-modulated incident spectrum. The influence of pixellation of the liquid crystal spatial light modulator on the efficiency of the phase-modulated second harmonic generation is discussed.
Resumo:
The ever-increasing spread of automation in industry puts the electrical engineer in a central role as a promoter of technological development in a sector such as the use of electricity, which is the basis of all the machinery and productive processes. Moreover the spread of drives for motor control and static converters with structures ever more complex, places the electrical engineer to face new challenges whose solution has as critical elements in the implementation of digital control techniques with the requirements of inexpensiveness and efficiency of the final product. The successfully application of solutions using non-conventional static converters awake an increasing interest in science and industry due to the promising opportunities. However, in the same time, new problems emerge whose solution is still under study and debate in the scientific community During the Ph.D. course several themes have been developed that, while obtaining the recent and growing interest of scientific community, have much space for the development of research activity and for industrial applications. The first area of research is related to the control of three phase induction motors with high dynamic performance and the sensorless control in the high speed range. The management of the operation of induction machine without position or speed sensors awakes interest in the industrial world due to the increased reliability and robustness of this solution combined with a lower cost of production and purchase of this technology compared to the others available in the market. During this dissertation control techniques will be proposed which are able to exploit the total dc link voltage and at the same time capable to exploit the maximum torque capability in whole speed range with good dynamic performance. The proposed solution preserves the simplicity of tuning of the regulators. Furthermore, in order to validate the effectiveness of presented solution, it is assessed in terms of performance and complexity and compared to two other algorithm presented in literature. The feasibility of the proposed algorithm is also tested on induction motor drive fed by a matrix converter. Another important research area is connected to the development of technology for vehicular applications. In this field the dynamic performances and the low power consumption is one of most important goals for an effective algorithm. Towards this direction, a control scheme for induction motor that integrates within a coherent solution some of the features that are commonly required to an electric vehicle drive is presented. The main features of the proposed control scheme are the capability to exploit the maximum torque in the whole speed range, a weak dependence on the motor parameters, a good robustness against the variations of the dc-link voltage and, whenever possible, the maximum efficiency. The second part of this dissertation is dedicated to the multi-phase systems. This technology, in fact, is characterized by a number of issues worthy of investigation that make it competitive with other technologies already on the market. Multiphase systems, allow to redistribute power at a higher number of phases, thus making possible the construction of electronic converters which otherwise would be very difficult to achieve due to the limits of present power electronics. Multiphase drives have an intrinsic reliability given by the possibility that a fault of a phase, caused by the possible failure of a component of the converter, can be solved without inefficiency of the machine or application of a pulsating torque. The control of the magnetic field spatial harmonics in the air-gap with order higher than one allows to reduce torque noise and to obtain high torque density motor and multi-motor applications. In one of the next chapters a control scheme able to increase the motor torque by adding a third harmonic component to the air-gap magnetic field will be presented. Above the base speed the control system reduces the motor flux in such a way to ensure the maximum torque capability. The presented analysis considers the drive constrains and shows how these limits modify the motor performance. The multi-motor applications are described by a well-defined number of multiphase machines, having series connected stator windings, with an opportune permutation of the phases these machines can be independently controlled with a single multi-phase inverter. In this dissertation this solution will be presented and an electric drive consisting of two five-phase PM tubular actuators fed by a single five-phase inverter will be presented. Finally the modulation strategies for a multi-phase inverter will be illustrated. The problem of the space vector modulation of multiphase inverters with an odd number of phases is solved in different way. An algorithmic approach and a look-up table solution will be proposed. The inverter output voltage capability will be investigated, showing that the proposed modulation strategy is able to fully exploit the dc input voltage either in sinusoidal or non-sinusoidal operating conditions. All this aspects are considered in the next chapters. In particular, Chapter 1 summarizes the mathematical model of induction motor. The Chapter 2 is a brief state of art on three-phase inverter. Chapter 3 proposes a stator flux vector control for a three- phase induction machine and compares this solution with two other algorithms presented in literature. Furthermore, in the same chapter, a complete electric drive based on matrix converter is presented. In Chapter 4 a control strategy suitable for electric vehicles is illustrated. Chapter 5 describes the mathematical model of multi-phase induction machines whereas chapter 6 analyzes the multi-phase inverter and its modulation strategies. Chapter 7 discusses the minimization of the power losses in IGBT multi-phase inverters with carrier-based pulse width modulation. In Chapter 8 an extended stator flux vector control for a seven-phase induction motor is presented. Chapter 9 concerns the high torque density applications and in Chapter 10 different fault tolerant control strategies are analyzed. Finally, the last chapter presents a positioning multi-motor drive consisting of two PM tubular five-phase actuators fed by a single five-phase inverter.