990 resultados para sinusoidal digital phase locked loops
Resumo:
Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of paired quark matter in a magnetic field, and taking into consideration the separation between the longitudinal and transverse pressures due to the field-induced breaking of the spatial rotational symmetry, the equation of state of the MCFL phase is self-consistently determined. This result is then used to investigate the possibility of absolute stability, which turns out to require a field-dependent ""bag constant"" to hold. That is, only if the bag constant varies with the magnetic field, there exists a window in the magnetic field vs bag constant plane for absolute stability of strange matter. Implications for stellar models of magnetized (self-bound) strange stars and hybrid (MCFL core) stars are calculated and discussed.
Resumo:
A new simple method to design linear-phase finite impulse response (FIR) digital filters, based on the steepest-descent optimization method, is presented in this paper. Starting from the specifications of the desired frequency response and a maximum approximation error a nearly optimum digital filter is obtained. Tests have shown that this method is alternative to other traditional ones such as Frequency Sampling and Parks-McClellan, mainly when other than brick wall frequency response is required as a desired frequency response. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We present results from both theoretical and experimental studies of the noise characteristics of mode-locked superfluorescent lasers. The results show that observed macroscopic broadband amplitude noise on the laser pulse train has its origin in quantum noise-initiated ''phase-wave'' fluctuations, and we find an associated phase transition in the noise characteristics as a function of laser cavity detuning.
Resumo:
This paper reports on the analysis of tidal breathing patterns measured during noninvasive forced oscillation lung function tests in six individual groups. The three adult groups were healthy, with prediagnosed chronic obstructive pulmonary disease, and with prediagnosed kyphoscoliosis, respectively. The three children groups were healthy, with prediagnosed asthma, and with prediagnosed cystic fibrosis, respectively. The analysis is applied to the pressure–volume curves and the pseudophaseplane loop by means of the box-counting method, which gives a measure of the area within each loop. The objective was to verify if there exists a link between the area of the loops, power-law patterns, and alterations in the respiratory structure with disease. We obtained statistically significant variations between the data sets corresponding to the six groups of patients, showing also the existence of power-law patterns. Our findings support the idea that the respiratory system changes with disease in terms of airway geometry and tissue parameters, leading, in turn, to variations in the fractal dimension of the respiratory tree and its dynamics.
Resumo:
Modern telecommunication equipment requires components that operate in many different frequency bands and support multiple communication standards, to cope with the growing demand for higher data rate. Also, a growing number of standards are adopting the use of spectrum efficient digital modulations, such as quadrature amplitude modulation (QAM) and orthogonal frequency division multiplexing (OFDM). These modulation schemes require accurate quadrature oscillators, which makes the quadrature oscillator a key block in modern radio frequency (RF) transceivers. The wide tuning range characteristics of inductorless quadrature oscillators make them natural candidates, despite their higher phase noise, in comparison with LC-oscillators. This thesis presents a detailed study of inductorless sinusoidal quadrature oscillators. Three quadrature oscillators are investigated: the active coupling RC-oscillator, the novel capacitive coupling RCoscillator, and the two-integrator oscillator. The thesis includes a detailed analysis of the Van der Pol oscillator (VDPO). This is used as a base model oscillator for the analysis of the coupled oscillators. Hence, the three oscillators are approximated by the VDPO. From the nonlinear Van der Pol equations, the oscillators’ key parameters are obtained. It is analysed first the case without component mismatches and then the case with mismatches. The research is focused on determining the impact of the components’ mismatches on the oscillator key parameters: frequency, amplitude-, and quadrature-errors. Furthermore, the minimization of the errors by adjusting the circuit parameters is addressed. A novel quadrature RC-oscillator using capacitive coupling is proposed. The advantages of using the capacitive coupling are that it is noiseless, requires a small area, and has low power dissipation. The equations of the oscillation amplitude, frequency, quadrature-error, and amplitude mismatch are derived. The theoretical results are confirmed by simulation and by measurement of two prototypes fabricated in 130 nm standard complementary metal-oxide-semiconductor (CMOS) technology. The measurements reveal that the power increase due to the coupling is marginal, leading to a figure-of-merit of -154.8 dBc/Hz. These results are consistent with the noiseless feature of this coupling and are comparable to those of the best state-of-the-art RC-oscillators, in the GHz range, but with the lowest power consumption (about 9 mW). The results for the three oscillators show that the amplitude- and the quadrature-errors are proportional to the component mismatches and inversely proportional to the coupling strength. Thus, increasing the coupling strength decreases both the amplitude- and quadrature-errors. With proper coupling strength, a quadrature error below 1° and amplitude imbalance below 1% are obtained. Furthermore, the simulations show that increasing the coupling strength reduces the phase noise. Hence, there is no trade-off between phase noise and quadrature error. In the twointegrator oscillator study, it was found that the quadrature error can be eliminated by adjusting the transconductances to compensate the capacitance mismatch. However, to obtain outputs in perfect quadrature one must allow some amplitude error.
Resumo:
INTRODUCTION: The phase III EORTC 22033-26033/NCIC CE5 intergroup trial compares 50.4 Gy radiotherapy with up-front temozolomide in previously untreated low-grade glioma. We describe the digital EORTC individual case review (ICR) performed to evaluate protocol radiotherapy (RT) compliance. METHODS: Fifty-eight institutions were asked to submit 1-2 randomly selected cases. Digital ICR datasets were uploaded to the EORTC server and accessed by three central reviewers. Twenty-seven parameters were analysed including volume delineation, treatment planning, organ at risk (OAR) dosimetry and verification. Consensus reviews were collated and summary statistics calculated. RESULTS: Fifty-seven of seventy-two requested datasets from forty-eight institutions were technically usable. 31/57 received a major deviation for at least one section. Relocation accuracy was according to protocol in 45. Just over 30% had acceptable target volumes. OAR contours were missing in an average of 25% of cases. Up to one-third of those present were incorrectly drawn while dosimetry was largely protocol compliant. Beam energy was acceptable in 97% and 48 patients had per protocol beam arrangements. CONCLUSIONS: Digital RT plan submission and review within the EORTC 22033-26033 ICR provide a solid foundation for future quality assurance procedures. Strict evaluation resulted in overall grades of minor and major deviation for 37% and 32%, respectively.
Resumo:
Different interferometric techniques were developed last decade to obtain full field, quantitative, and absolute phase imaging, such as phase-shifting, Fourier phase microscopy, Hilbert phase microscopy or digital holographic microscopy (DHM). Although, these techniques are very similar, DHM combines several advantages. In contrast, to phase shifting, DHM is indeed capable of single-shot hologram recording allowing a real-time absolute phase imaging. On the other hand, unlike to Fourier phase or Hilbert phase microscopy, DHM does not require to record in focus images of the specimen on the digital detector (CCD or CMOS camera), because a numerical focalization adjustment can be performed by a numerical wavefront propagation. Consequently, the depth of view of high NA microscope objectives is numerically extended. For example, two different biological cells, floating at different depths in a liquid, can be focalized numerically from the same digital hologram. Moreover, the numerical propagation associated to digital optics and automatic fitting procedures, permits vibrations insensitive full- field phase imaging and the complete compensation for a priori any image distortion or/and phase aberrations introduced for example by imperfections of holders or perfusion chamber. Examples of real-time full-field phase images of biological cells have been demonstrated. ©2008 COPYRIGHT SPIE
Resumo:
Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed.
Resumo:
The Shadow Moiré fringe patterns are level lines of equal depth generated by interference between a master grid and its shadow projected on the surface. In simplistic approach, the minimum error is about the order of the master grid pitch, that is, always larger than 0,1 mm, resulting in an experimental technique of low precision. The use of a phase shift increases the accuracy of the Shadow Moiré technique. The current work uses the phase shifting method to determine the surfaces three-dimensional shape using isothamic fringe patterns and digital image processing. The current study presents the method and applies it to images obtained by simulation for error evaluation, as well as to a buckled plate, obtaining excellent results. The method hands itself particularly useful to decrease the errors in the interpretation of the Moiré fringes that can adversely affect the calculations of displacements in pieces containing many concave and convex regions in relatively small areas.
Resumo:
We report on experiments aimed at comparing the hysteretic response of a Cu-Zn-Al single crystal undergoing a martensitic transition under strain-driven and stress-driven conditions. Strain-driven experiments were performed using a conventional tensile machine while a special device was designed to perform stress-driven experiments. Significant differences in the hysteresis loops were found. The strain-driven curves show reentrant behavior yield point which is not observed in the stress-driven case. The dissipated energy in the stress-driven curves is larger than in the strain-driven ones. Results from recently proposed models qualitatively agree with experiments.
Resumo:
An automatic image processing and analysis technique has been developed for quantitative characterization of multi-phase materials. For the development of this technique is used the Khoros system that offers the basic morphological tools and a flexible, visual programming language. These techniques are implemented in a highly user oriented image processing environment that allows the user to adapt each step of the processing to his special requirements.To illustrate the implementation and performance of this technique, images of two different materials are processed for microstructure characterization. The result is presented through the determination of volume fraction of the different phases or precipitates.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents some methodologies for reactive energy measurement, considering three modern power theories that are suitable for three-phase four-wire non-sinusoidal and unbalanced circuits. The theories were applied in some profiles collected in electrical distribution systems which have real characteristics for voltages and currents measured by commercial reactive energy meters. The experimental results are presented in order to analyze the accuracy of the methodologies, considering the standard IEEE 1459-2010 as a reference. Finally, for additional comparisons, the theories will be confronted with the modern Yokogawa WT3000 energy meter and three samples of a commercial energy meter through an experimental setup. © 2011 IEEE.
Resumo:
This paper proposes a new methodology to control the power flow between a distributed generator (DG) and the electrical power distribution grid. It is used the droop voltage control to manage the active and reactive power. Through this control a sinusoidal voltage reference is generated to be tracked by voltage loop and this loop generates the current reference for the current loop. The proposed control introduces feed-forward states improving the control performance in order to obtain high quality for the current injected to the grid. The controllers were obtained through the linear matrix inequalities (LMI) using the D-stability analysis to allocate the closed-loop controller poles. Therefore, the results show quick transient response with low oscillations. Thus, this paper presents the proposed control technique, the main simulation results and a prototype with 1000VA was developed in the laboratory in order to demonstrate the feasibility of the proposed control. © 2012 IEEE.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS