987 resultados para silicon oxide
Resumo:
Molybdenum oxide films (MoO3) were deposited on glass and crystalline silicon substrates by sputtering of molybdenum target under various oxygen partial pressures in the range 8 × 10−5–8 × 10−4 mbar and at a fixed substrate temperature of 473 K employing dc magnetron sputtering technique. The influence of oxygen partial pressure on the composition stoichiometry, chemical binding configuration, crystallographic structure and electrical and optical properties was systematically studied. X-ray photoelectron spectra of the films formed at 8 × 10−5 mbar showed the presence of Mo6+ and Mo5+ oxidation states of MoO3 and MoO3−x. The films deposited at oxygen partial pressure of 2 × 10−4 mbar showed Mo6+ oxidation state indicating the films were nearly stoichiometric. It was also confirmed by the Fourier transform infrared spectroscopic studies. X-ray diffraction studies revealed that the films formed at oxygen partial pressure of 2 × 10−4 mbar showed the presence of (0 k 0) reflections indicated the layered structure of α-phase MoO3. The electrical conductivity of the films decreased from 3.6 × 10−5 to 1.6 × 10−6 Ω−1 cm−1, the optical band gap of the films increased from 2.93 to 3.26 eV and the refractive index increased from 2.02 to 2.13 with the increase of oxygen partial pressure from 8 × 10−5 to 8 × 10−4 mbar, respectively.
Resumo:
Tungsten oxide thin films are of great interest due to their promising applications in various optoelectronic thin film devices. We have investigated the microstructural evolution of tungsten oxide thin films grown by DC magnetron sputtering on silicon substrate. The structural characterization and surface morphology were carried out using X-ray diffraction and Scanning Electron Microscopy (SEM). The as deposited films were amorphous, where as, thin films annealed above 400 degrees C were crystalline. In order to explain the microstructural changes due to annealing, we have proposed a ``instability wheel'' model for the evolution of the microstructure. This model explains the transformation of mater into various geometries within them selves, followed by external perturbation.
Resumo:
Current-voltage (I–U) characteristics of MOS structures on polycrystalline silicon are investigated. A model based on the carrier transport through the traps in the oxide is described to explain the I–U characteristics.Es werden Strom-Spannungs(I–U)-Charakteristiken von MOS-Strukturen auf polykristallinem Silizium untersucht. Ein Modell zur Erklärung der I–U-Charakteristiken wird beschrieben, das auf dem Ladungstransport über Oxidtraps beruht.
Resumo:
TiO2 and Al2O3 are commonly used materials in optical thin films in the visible and near‐infrared wavelength region due to their high transparency and good stability. In this work, TiO2 and Al2O3 single, and nano composite thin films with different compositions were deposited on glass and silicon substrates at room temperature using a sol‐gel spin coater. The optical properties like reflectance, transmittance and refractive index have been studied using Spectrophotometer, and structural properties using X‐Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM).
Resumo:
We have developed a unique single-step chemical vapor deposition (CVD) route for the synthesis of composite thin films containing carbon nanotubes (CNTs). CVD was carried out in an inert ambient using only iron(III) acetylacetonate as the precursor. Depositions were conducted at 700 degrees C on stainless steel substrates in argon ambient in the absence of any reactive gases (such as oxygen, hydrogen). By changing the deposition parameters, especially the pressure in the CVD reactor, the form of carbon deposited could be changed from amorphous to carbon nanotubes, the latter resulting in Fe-Fe3O4-CNT films. X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and electron microscopy together confirm the formation of the three-component composite and illustrate the nanoscale mixing of the components. Elemental iron formed in this process was protected from oxidation by the co-deposited carbon surrounding it. Irrespective of the substrate used, a composite coating with CNTs was formed under optimum conditions, as verified by analyses of the film formed on polycrystalline alumina and silicon substrates.
Resumo:
The Schottky barrier heights of various metals on the high permitivity oxides tantalum pentoxide, barium strontium titanate, lead zirconate titanate, and strontium bismuth tantalate have been calculated as a function of the metal work function. It is found that these oxides have a dimensionless Schottky barrier pinning factor S of 0.28-0.4 and not close to 1 because S is controlled by Ti-O-type bonds not Sr-O-type bonds, as assumed in earlier work. The band offsets on silicon are asymmetric with a much smaller offset at the conduction band, so that Ta2O5 and barium strontium titanate are relatively poor barriers to electrons on Si. © 1999 American Institute of Physics.
Resumo:
Schottky barrier heights of various metals on tantalum pentoxide, barium strontium titanate, lead zirconate-titanate and strontium bismuth tantalate have been calculated as a function of metal work function. These oxides have a dimensionless Schottky barrier pinning factor, S, of 0.28 - 0.4 and not close to 1, because S is controlled by the Ti-O type bonds not Sr-O type bonds, as assumed previously. Band offsets on silicon are asymmetric with much smaller offset at the conduction band, so that Ta2O5 and barium strontium titanate (BST) are relatively poor barriers to electrons on Si.
Resumo:
This work describes the deposition, annealing and characterisation of semi-insulating oxygen-doped silicon films at temperatures compatible with polysilicon circuitry on glass. The semi-insulating layers are deposited by the plasma enhanced chemical vapour deposition technique from silane (SiH4), nitrous oxide (N2O) and helium (He) gas mixtures at a temperature of 350 °C. The as-deposited films are then furnace annealed at 600 °C which is the maximum process temperature. Raman analysis shows the as-deposited and annealed films to be completely amorphous. The most important deposition variable is the N2O SiH4 gas ratio. By varying the N2O SiH4 ratio the conductivity of the annealed films can be accurately controlled, for the first time, down to a minimum of ≈10-7Ω-1cm-1 where they exhibit a T -1 4 temperature dependence indicative of a hopping conduction mechanism. Helium dilution of the reactant gases is shown to improve both film uniformity and reproducibility. A model for the microstructure of these semi-insulating amorphous oxygen-doped silicon films is proposed to explain the observed physical and electrical properties. © 1995.
Resumo:
This work describes the annealing and characterisation of semi-insulating oxygen-doped silicon films deposited by the Plasma Enhanced Chemical Vapour Deposition (PECVD) technique from silane (SiH4), nitrous oxide (N2O) and helium (He) gas mixtures. The maximum process temperature is chosen to be compatible with large area polycrystalline silicon (poly-Si) circuitry on glass. The most important deposition variable is shown to be the N2O SiH4 gas ratio. Helium dilution results in improved film uniformity and reproducibility. Raman analysis shows the 'as-deposited' and annealed films to be completely amorphous. A model for the microstructure of these Semi-Insulating Amorphous Oxygen-doped Silicon (SIAOS) films is proposed to explain the observed physical and electrical properties. © 1995.
Resumo:
Gadolinium oxide thin films have been prepared on silicon (100) substrates with a low-energy dual ion-beam epitaxial technique. Substrate temperature was an important factor to affect the crystal structures and textures in an ion energy range of 100-500 eV. The films had a monoclinic Gd2O3 structure with preferred orientation ((4) over bar 02) at low substrate temperatures. When the substrate temperature was increased, the orientation turned to (202), and finally, the cubic structure appeared at the substrate temperature of 700 degreesC, which disagreed with the previous report because of the ion energy. The AES studies found that Gadolinium oxide shared Gd2O3 structures, although there were a lot of oxygen deficiencies in the films, and the XPS results confirmed this. AFM was also used to investigate the surface images of the samples. Finally, the electrical properties were presented. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Seeded zone-melt recrystallization using a dual electron beam system has been performed on silicon-on-insulator material, which was prepared with single-crystal silicon filling of the seed windows by selective epitaxial growth. The crystal quality has been assessed by a variety of microscopic techniques, and it is shown that single-crystal films 0.5-1.0 μm thick over 1.0 μm of isolating oxide may be prepared by this method. These films have considerably less lateral variation in thickness than standard material, in which the windows are not so filled. The filling method is suitable for both single- and multiple-layer silicon-on-insulator, and gives the advantages of excellent layer uniformity after recrystallization and improved planarity of the whole chip structure. Experiments using various amounts of seed window filling have shown that the lateral variations of silicon film thickness seen in unplanarized material are due to stress relief in the cap oxide when the silicon film is molten, rather than the effect previously postulated in which they were assumed to be due to the contraction of silicon on melting.