995 resultados para signalized intersection safety
Resumo:
A national-level safety analysis tool is needed to complement existing analytical tools for assessment of the safety impacts of roadway design alternatives. FHWA has sponsored the development of the Interactive Highway Safety Design Model (IHSDM), which is roadway design and redesign software that estimates the safety effects of alternative designs. Considering the importance of IHSDM in shaping the future of safety-related transportation investment decisions, FHWA justifiably sponsored research with the sole intent of independently validating some of the statistical models and algorithms in IHSDM. Statistical model validation aims to accomplish many important tasks, including (a) assessment of the logical defensibility of proposed models, (b) assessment of the transferability of models over future time periods and across different geographic locations, and (c) identification of areas in which future model improvements should be made. These three activities are reported for five proposed types of rural intersection crash prediction models. The internal validation of the model revealed that the crash models potentially suffer from omitted variables that affect safety, site selection and countermeasure selection bias, poorly measured and surrogate variables, and misspecification of model functional forms. The external validation indicated the inability of models to perform on par with model estimation performance. Recommendations for improving the state of the practice from this research include the systematic conduct of carefully designed before-and-after studies, improvements in data standardization and collection practices, and the development of analytical methods to combine the results of before-and-after studies with cross-sectional studies in a meaningful and useful way.
Resumo:
One major gap in transportation system safety management is the ability to assess the safety ramifications of design changes for both new road projects and modifications to existing roads. To fulfill this need, FHWA and its many partners are developing a safety forecasting tool, the Interactive Highway Safety Design Model (IHSDM). The tool will be used by roadway design engineers, safety analysts, and planners throughout the United States. As such, the statistical models embedded in IHSDM will need to be able to forecast safety impacts under a wide range of roadway configurations and environmental conditions for a wide range of driver populations and will need to be able to capture elements of driving risk across states. One of the IHSDM algorithms developed by FHWA and its contractors is for forecasting accidents on rural road segments and rural intersections. The methodological approach is to use predictive models for specific base conditions, with traffic volume information as the sole explanatory variable for crashes, and then to apply regional or state calibration factors and accident modification factors (AMFs) to estimate the impact on accidents of geometric characteristics that differ from the base model conditions. In the majority of past approaches, AMFs are derived from parameter estimates associated with the explanatory variables. A recent study for FHWA used a multistate database to examine in detail the use of the algorithm with the base model-AMF approach and explored alternative base model forms as well as the use of full models that included nontraffic-related variables and other approaches to estimate AMFs. That research effort is reported. The results support the IHSDM methodology.
Resumo:
Regional safety program managers face a daunting challenge in the attempt to reduce deaths, injuries, and economic losses that result from motor vehicle crashes. This difficult mission is complicated by the combination of a large perceived need, small budget, and uncertainty about how effective each proposed countermeasure would be if implemented. A manager can turn to the research record for insight, but the measured effect of a single countermeasure often varies widely from study to study and across jurisdictions. The challenge of converting widespread and conflicting research results into a regionally meaningful conclusion can be addressed by incorporating "subjective" information into a Bayesian analysis framework. Engineering evaluations of crashes provide the subjective input on countermeasure effectiveness in the proposed Bayesian analysis framework. Empirical Bayes approaches are widely used in before-and-after studies and "hot-spot" identification; however, in these cases, the prior information was typically obtained from the data (empirically), not subjective sources. The power and advantages of Bayesian methods for assessing countermeasure effectiveness are presented. Also, an engineering evaluation approach developed at the Georgia Institute of Technology is described. Results are presented from an experiment conducted to assess the repeatability and objectivity of subjective engineering evaluations. In particular, the focus is on the importance, methodology, and feasibility of the subjective engineering evaluation for assessing countermeasures.
Resumo:
Persistent use of safety restraints prevents deaths and reduces the severity and number of injuries resulting from motor vehicle crashes. However, safety-restraint use rates in the United States have been below those of other nations with safety-restraint enforcement laws. With a better understanding of the relationship between safety-restraint law enforcement and safety-restraint use, programs can be implemented to decrease the number of deaths and injuries resulting from motor vehicle crashes. Does safety-restraint use increase as enforcement increases? Do motorists increase their safety-restraint use in response to the general presence of law enforcement or to targeted law enforcement efforts? Does a relationship between enforcement and restraint use exist at the countywide level? A logistic regression model was estimated by using county-level safety-restraint use data and traffic citation statistics collected in 13 counties within the state of Florida in 1997. The model results suggest that safety-restraint use is positively correlated with enforcement intensity, is negatively correlated with safety-restraint enforcement coverage (in lanemiles of enforcement coverage), and is greater in urban than rural areas. The quantification of these relationships may assist Florida and other law enforcement agencies in raising safety-restraint use rates by allocating limited funds more efficiently either by allocating additional time for enforcement activities of the existing force or by increasing enforcement staff. In addition, the research supports a commonsense notion that enforcement activities do result in behavioral response.
Resumo:
Construction sector application of Lead Indicators generally and Positive Performance Indicators (PPIs) particularly, are largely seen by the sector as not providing generalizable indicators of safety effectiveness. Similarly, safety culture is often cited as an essential factor in improving safety performance, yet there is no known reliable way of measuring safety culture. This paper proposes that the accurate measurement of safety effectiveness and safety culture is a requirement for assessing safe behaviours, safety knowledge, effective communication and safety performance. Currently there are no standard national or international safety effectiveness indicators (SEIs) that are accepted by the construction industry. The challenge is that quantitative survey instruments developed for measuring safety culture and/ or safety climate are inherently flawed methodologically and do not produce reliable and representative data concerning attitudes to safety. Measures that combine quantitative and qualitative components are needed to provide a clear utility for safety effectiveness indicators.
Resumo:
This paper presents a critical review of past research in the work-related driving field in light vehicle fleets (e.g., vehicles < 4.5 tonnes) and an intervention framework that provides future direction for practitioners and researchers. Although work-related driving crashes have become the most common cause of death, injury, and absence from work in Australia and overseas, very limited research has progressed in establishing effective strategies to improve safety outcomes. In particular, the majority of past research has been data-driven, and therefore, limited attention has been given to theoretical development in establishing the behavioural mechanism underlying driving behaviour. As such, this paper argues that to move forward in the field of work-related driving safety, practitioners and researchers need to gain a better understanding of the individual and organisational factors influencing safety through adopting relevant theoretical frameworks, which in turn will inform the development of specifically targeted theory-driven interventions. This paper presents an intervention framework that is based on relevant theoretical frameworks and sound methodological design, incorporating interventions that can be directed at the appropriate level, individual and driving target group.
Resumo:
This paper presents an approach to providing better safety for adolescents playing online games. We highlight an emerging paedophile presence in online games and offer a general framework for the design of monitoring and alerting tools. Our method is to monitor and detect relationships forming with a child in online games, and alert if the relationship indicates an offline meeting with the child has been arranged or has the potential to occur. A prototype implementation with demonstrative components of the framework has been created and is introduced. The prototype demonstration and evaluation uses a teen rated online relationship-building environment for its case study, specifically the predominant Massive Multiplayer Online Game (MMO) World of Warcraft.
Resumo:
Inexperience has been shown to be a major factor in many motorcycle crashes worldwide. Learner motorcyclists are not protected from the risks of the on-road environment to the same extent as learner car drivers. Whilst the learner stage has consistently been shown to be the safest phase for car drivers and the provisional stage to be the most dangerous, data from several Australian states has shown similar numbers of learner and provisionally licensed motorcyclists in crashes. This paper reports a review of learner rider safety research undertaken to inform potential future improvements to the licensing and training system in Queensland, Australia.
Resumo:
At least two important transportation planning activities rely on planning-level crash prediction models. One is motivated by the Transportation Equity Act for the 21st Century, which requires departments of transportation and metropolitan planning organizations to consider safety explicitly in the transportation planning process. The second could arise from a need for state agencies to establish incentive programs to reduce injuries and save lives. Both applications require a forecast of safety for a future period. Planning-level crash prediction models for the Tucson, Arizona, metropolitan region are presented to demonstrate the feasibility of such models. Data were separated into fatal, injury, and property-damage crashes. To accommodate overdispersion in the data, negative binomial regression models were applied. To accommodate the simultaneity of fatality and injury crash outcomes, simultaneous estimation of the models was conducted. All models produce crash forecasts at the traffic analysis zone level. Statistically significant (p-values < 0.05) and theoretically meaningful variables for the fatal crash model included population density, persons 17 years old or younger as a percentage of the total population, and intersection density. Significant variables for the injury and property-damage crash models were population density, number of employees, intersections density, percentage of miles of principal arterial, percentage of miles of minor arterials, and percentage of miles of urban collectors. Among several conclusions it is suggested that planning-level safety models are feasible and may play a role in future planning activities. However, caution must be exercised with such models.
Resumo:
It is important to examine the nature of the relationships between roadway, environmental, and traffic factors and motor vehicle crashes, with the aim to improve the collective understanding of causal mechanisms involved in crashes and to better predict their occurrence. Statistical models of motor vehicle crashes are one path of inquiry often used to gain these initial insights. Recent efforts have focused on the estimation of negative binomial and Poisson regression models (and related deviants) due to their relatively good fit to crash data. Of course analysts constantly seek methods that offer greater consistency with the data generating mechanism (motor vehicle crashes in this case), provide better statistical fit, and provide insight into data structure that was previously unavailable. One such opportunity exists with some types of crash data, in particular crash-level data that are collected across roadway segments, intersections, etc. It is argued in this paper that some crash data possess hierarchical structure that has not routinely been exploited. This paper describes the application of binomial multilevel models of crash types using 548 motor vehicle crashes collected from 91 two-lane rural intersections in the state of Georgia. Crash prediction models are estimated for angle, rear-end, and sideswipe (both same direction and opposite direction) crashes. The contributions of the paper are the realization of hierarchical data structure and the application of a theoretically appealing and suitable analysis approach for multilevel data, yielding insights into intersection-related crashes by crash type.
Resumo:
Expert panels have been used extensively in the development of the "Highway Safety Manual" to extract research information from highway safety experts. While the panels have been used to recommend agendas for new and continuing research, their primary role has been to develop accident modification factors—quantitative relationships between highway safety and various highway safety treatments. Because the expert panels derive quantitative information in a “qualitative” environment and because their findings can have significant impacts on highway safety investment decisions, the expert panel process should be described and critiqued. This paper is the first known written description and critique of the expert panel process and is intended to serve professionals wishing to conduct such panels.
Resumo:
The Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 mandated the consideration of safety in the regional transportation planning process. As part of National Cooperative Highway Research Program Project 8-44, "Incorporating Safety into the Transportation Planning Process," we conducted a telephone survey to assess safety-related activities and expertise at Governors Highway Safety Associations (GHSAs), and GHSA relationships with metropolitan planning organizations (MPOs) and state departments of transportation (DOTs). The survey results were combined with statewide crash data to enable exploratory modeling of the relationship between GHSA policies and programs and statewide safety. The modeling objective was to illuminate current hurdles to ISTEA implementation, so that appropriate institutional, analytical, and personnel improvements can be made. The study revealed that coordination of transportation safety across DOTs, MPOs, GHSAs, and departments of public safety is generally beneficial to the implementation of safety. In addition, better coordination is characterized by more positive and constructive attitudes toward incorporating safety into planning.
Resumo:
The intent of this note is to succinctly articulate additional points that were not provided in the original paper (Lord et al., 2005) and to help clarify a collective reluctance to adopt zero-inflated (ZI) models for modeling highway safety data. A dialogue on this important issue, just one of many important safety modeling issues, is healthy discourse on the path towards improved safety modeling. This note first provides a summary of prior findings and conclusions of the original paper. It then presents two critical and relevant issues: the maximizing statistical fit fallacy and logic problems with the ZI model in highway safety modeling. Finally, we provide brief conclusions.
Resumo:
This paper presents the results of a structural equation model (SEM) that describes and quantifies the relationships between corporate culture and safety performance. The SEM is estimated using 196 individual questionnaire responses from three companies with better than average safety records. A multiattribute analysis of corporate safety culture characteristics resulted in a hierarchical description of corporate safety culture comprised of three major categories — people, process, and value. These three major categories were decomposed into 54 measurable questions and used to develop a questionnaire to quantify corporate safety culture. The SEM identified five latent variables that describe corporate safety culture: (1) a company’s safety commitment; (2) the safety incentives that are offered to field personal for safe performance; (3) the subcontractor involvement in the company culture; (4) the field safety accountability and dedication; and (5) the disincentives for unsafe behaviors. These characteristics of company safety culture serve as indicators for a company’s safety performance. Based on the findings from this limited sample of three companies, this paper proposes a list of practices that companies may consider to improve corporate safety culture and safety performance. A more comprehensive study based on a larger sample is recommended to corroborate the findings of this study.