977 resultados para signal loss
Resumo:
It is unclear which theoretical dimension of psychological stress affects health status. We hypothesized that both distress and coping mediate the relationship between socio-economic position and tooth loss. Cross-sectional data from 2915 middle-aged adults evaluated retention of < 20 teeth, behaviors, psychological stress, and sociodemographic characteristics. Principal components analysis of the Perceived Stress Scale (PSS) extracted 'distress' (a = 0.85) and 'coping' (a =0.83) factors, consistent with theory. Hierarchical entry of explanatory variables into age- and sex-adjusted logistic regression models estimated odds ratios (OR) and 95% confidence intervals [95% CI] for retention of < 20 teeth. Analysis of the separate contributions of distress and coping revealed a significant main effect of coping (OR = 0.7 [95% CI = 0.7-0.8]), but no effect for distress (OR = 1.0 [95% CI = 0.9-1.1]) or for the interaction of coping and distress. Behavior and psychological stress only modestly attenuated socio-economic inequality in retention of < 20 teeth, providing evidence to support a mediating role of coping.
Resumo:
In Bryan v Maloney, the High Court extended a builder’s duty of care to encompass a liability in negligence for the pure economic loss sustained by a subsequent purchaser of a residential dwelling as a result of latent defects in the building’s construction. Recently, in Woolcock Street Investments Pty Ltd v CDG Pty Ltd, the Court refused to extend this liability to defects in commercial premises. The decision therefore provides an opportunity to re-examine the rationale and policy behind current jurisprudence governing builders’ liability for pure economic loss. In doing so, this article considers the principles relevant to the determination of a duty of care generally and whether the differences between purchasers of residential and commercial properties are as great as the case law suggests
Resumo:
Structural health monitoring (SHM) is the term applied to the procedure of monitoring a structure’s performance, assessing its condition and carrying out appropriate retrofitting so that it performs reliably, safely and efficiently. Bridges form an important part of a nation’s infrastructure. They deteriorate due to age and changing load patterns and hence early detection of damage helps in prolonging the lives and preventing catastrophic failures. Monitoring of bridges has been traditionally done by means of visual inspection. With recent developments in sensor technology and availability of advanced computing resources, newer techniques have emerged for SHM. Acoustic emission (AE) is one such technology that is attracting attention of engineers and researchers all around the world. This paper discusses the use of AE technology in health monitoring of bridge structures, with a special focus on analysis of recorded data. AE waves are stress waves generated by mechanical deformation of material and can be recorded by means of sensors attached to the surface of the structure. Analysis of the AE signals provides vital information regarding the nature of the source of emission. Signal processing of the AE waveform data can be carried out in several ways and is predominantly based on time and frequency domains. Short time Fourier transform and wavelet analysis have proved to be superior alternatives to traditional frequency based analysis in extracting information from recorded waveform. Some of the preliminary results of the application of these analysis tools in signal processing of recorded AE data will be presented in this paper.
Resumo:
This paper presents a model to estimate travel time using cumulative plots. Three different cases considered are i) case-Det, for only detector data; ii) case-DetSig, for detector data and signal controller data and iii) case-DetSigSFR: for detector data, signal controller data and saturation flow rate. The performance of the model for different detection intervals is evaluated. It is observed that detection interval is not critical if signal timings are available. Comparable accuracy can be obtained from larger detection interval with signal timings or from shorter detection interval without signal timings. The performance for case-DetSig and for case-DetSigSFR is consistent with accuracy generally more than 95% whereas, case-Det is highly sensitive to the signal phases in the detection interval and its performance is uncertain if detection interval is integral multiple of signal cycles.
Resumo:
To allocate and size capacitors in a distribution system, an optimization algorithm, called Discrete Particle Swarm Optimization (DPSO), is employed in this paper. The objective is to minimize the transmission line loss cost plus capacitors cost. During the optimization procedure, the bus voltage, the feeder current and the reactive power flowing back to the source side should be maintained within standard levels. To validate the proposed method, the semi-urban distribution system that is connected to bus 2 of the Roy Billinton Test System (RBTS) is used. This 37-bus distribution system has 22 loads being located in the secondary side of a distribution substation (33/11 kV). Reducing the transmission line loss in a standard system, in which the transmission line loss consists of only about 6.6 percent of total power, the capabilities of the proposed technique are seen to be validated.