111 resultados para shotgun lipidomics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Chromobacterium violaceum is a β-proteobacterium Gram-negative widely found in tropical and subtropical regions, whose genome was sequenced in 2003 showing great metabolic versatility and biotechnological and pharmaceutical potential. Given the large number of ORFs related to iron metabolism described in the genome of C. violaceum, the importance of this metal for various biological processes and due to lack of data about the consequences of excess of iron in free-living organisms, it is important to study the response mechanism of this bacterium in a culture filled with iron. Previous work showed that C. violaceum is resistant to high concentrations of this metal, but has not yet been described the mechanism which is used to this survival. Thus, to elucidate the response of C. violaceum cultured in high concentrations of iron and expecting to obtain candidate genes for use in bioremediation processes, this study used a shotgun proteomics approach and systems biology to assess the response of C. violaceum grown in the presence and absence of 9 mM of iron. The analysis identified 531 proteins, being 71 exclusively expressed by the bacteria grown in the presence of the metal and 100 just in the control condition. The increase in expression of proteins related to the TCA cycle possibly represents a metabolic reprogramming of the bacteria caused by high concentration of iron in the medium. Moreover, we observed an increase in the activity assay of superoxide dismutase and catalase as well as in Total Antioxidant Activity assay, suggesting that the metal is inducing oxidative stress in C. violaceum that increases the levels of violacein and antioxidant enzymes to better adapt to the emerging conditions. Are also part of the adaptive response changes in expression of proteins related to transport, including iron, as well as an increased expression of proteins related to chemotaxis response, which would lead the bacteria to change the direction of its movement away from the metal. Systems Biology results, also suggest a metabolic reprogramming with mechanisms coordinated by bottleneck proteins involved in transcription (GreA), energy metabolism (Rpe and TpiA) and methylation (AhcY)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The β-proteobacterium Chromobacterium violaceum is a Gram-negative, free-living, saprophytic and opportunistic pathogen that inhabits tropical and subtropical ecosystems among them, in soil and water of the Amazon. It has great biotechnological potential, and because of this potential, its genome was completely sequenced in 2003. Genome analysis showed that this bacterium has several genes with functions related to the ability to survive under different kinds of environmental stresses. In order to understand the physiological response of C. violaceum under oxidative stress, we applied the tool of shotgun proteomics. Thus, colonies of C. violaceum ATCC 12472 were grown in the presence and absence of 8 mM H2O2 for two hours, total proteins were extracted from bacteria, subjected to SDS-PAGE, stained and hydrolysed. The tryptic peptides generated were subjected to a linear-liquid chromatography (LC) followed by mass spectrometer (LTQ-XL-Orbitrap) to obtain quantitative and qualitative data. A shotgun proteomics allows to compare directly in complex samples, differential expression of proteins and found that in C. Violaceum, 131 proteins are expressed exclusively in the control condition, 177 proteins began to be expressed under oxidative stress and 1175 proteins have expression in both conditions. The results showed that, under the condition of oxidative stress, this bacterium changes its metabolism by increasing the expression of proteins capable of combating oxidative stress and decreasing the expression of proteins related processes bacterial growth and catabolism (transcription, translation, carbon metabolism and fatty acids). A tool with of proteomics as an approach of integrative biology provided an overview of the metabolic pathways involved in the response of C. violaceum to oxidative stress, as well as significantly amplified understanding physiological response to environmental stress. Biochemical and "in silico" assays with the hypothetical ORF CV_0868 found that this is part of an operon. Phylogenetic analysis of superoxide dismutase, protein belonging to the operon also showed that the gene is duplicated in genome of C. violaceum and the second copy was acquired through a horizontal transfer event. Possibly, not only the SOD gene but also all genes comprising this operon were obtained in the same manner. It was concluded that C. violaceum has complex, efficient and versatile mechanisms in oxidative stress response

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Microbiana, 2016.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gunshot residue (GSR) is the term used to describe the particles originating from different parts of the firearm and ammunition during the discharge. A fast and practical field tool to detect the presence of GSR can assist law enforcement in the accurate identification of subjects. A novel field sampling device is presented for the first time for the fast detection and quantitation of volatile organic compounds (VOCs). The capillary microextraction of volatiles (CMV) is a headspace sampling technique that provides fast results (< 2 min. sampling time) and is reported as a versatile and high-efficiency sampling tool. The CMV device can be coupled to a Gas Chromatography-Mass Spectrometry (GC-MS) instrument by installation of a thermal separation probe in the injection port of the GC. An analytical method using the CMV device was developed for the detection of 17 compounds commonly found in polluted environments. The acceptability of the CMV as a field sampling method for the detection of VOCs is demonstrated by following the criteria established by the Environmental Protection Agency (EPA) compendium method TO-17. The CMV device was used, for the first time, for the detection of VOCs on swabs from the hands of shooters, and non-shooters and spent cartridges from different types of ammunition (i.e., pistol, rifle, and shotgun). The proposed method consists in the headspace extraction of VOCs in smokeless powders present in the propellant of ammunition. The sensitivity of this method was demonstrated with method detection limits (MDLs) 4-26 ng for diphenylamine (DPA), nitroglycerine (NG), 2,4-dinitrotoluene (2,4-DNT), and ethyl centralite (EC). In addition, a fast method was developed for the detection of the inorganic components (i.e., Ba, Pb, and Sb) characteristic of GSR presence by Laser Induced Breakdown Spectroscopy (LIBS). Advantages of LIBS include fast analysis (~ 12 seconds per sample) and good sensitivity, with expected MDLs in the range of 0.1-20 ng for target elements. Statistical analysis of the results using both techniques was performed to determine any correlation between the variables analyzed. This work demonstrates that the information collected from the analysis of organic components has the potential to improve the detection of GSR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The industrial PhD project presented here is part of the R&D strategies of the Lipinutragen company. The innovation brought by the company concerns nutrilipidomics, i.e. the correlation between the lipid composition (in fatty acids) of the cell membrane and lipid-based nutraceuticals, especially starting from the well-known dependence of the lipid composition on the intake of essential fats, omega- 6 and omega-3 polyunsaturated fatty acids. Among the results obtained from the membrane lipidomic profiles, the case of autistic subjects is here highlighted, showing the significant deficiency of docosahexaenoic acid (DHA). The activity during the PhD was devoted to the nutrilipidomic approach. Part of the activities were devoted to scientific research in lipidomics: a) the study of lipidomic profiles in the frame of two collaboration projects: one with the group of Dr. I. Tueros at AZTI, Bilbao, regading obese population, and the other one regarding seed germination with the changes of the fatty acid profiles with the group of prof. A. Balestrazzi of the University of Parma; b) the liposome preparation for protection and lifetime prolongation of the peptide somatostatin, which was an important premise to the formulation of the DHA-containing microemulsion. The activities was also focused on the development of DHA-containing nutraceutical formulations in the form of emulsion, overcoming the difficulty of the capsule ingestion, to be administered orally. The work pointed to study the combination of active ingredients, based on the previous know-how regarding the bioavailability for the cell membrane incorporation. The ingredients of the formulation were studied and tested in vitro for the bioavailability of DHA to be incorporated in the cell membranes of different types of cultured cells. Part of this study is covered by non-disclosure agreement since it belongs to the know-how of Lipinutragen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To ensure food safety and to prevent food-borne illnesses, rapid and accurate detection of pathogenic agents is essential. It has already been demonstrated that shotgun metagenomic sequencing can be used to detect pathogens and their antibiotic resistance genes in food. In the studies presented in this thesis, the application shotgun metagenomic sequencing has been applied to investigate both the microbiome and resistome of foods of animal origin in order to assess advantages and disadvantages of shotgun metagenomic sequencing in comparison to the cultural methods. In the first study, it has been shown that shotgun metagenomics can be applied to detect microorganisms experimentally spiked in cold-smoked salmon. Nevertheless, a direct correlation between cell concentration of each spiked microorganism and number of corresponding reads cannot be established yet. In the second and third studies, the microbiomes and resistomes characterizing caeca and the corresponding carcasses of the birds reared in the conventional and antibiotic free farms were compared. The results highlighted the need to reduce sources of microbial contamination and antimicrobial resistance not only at the farm level but also at the post-harvest one. In the fourth study, it has been demonstrated that testing a single aliquot of a food homogenate is representative of the whole homogenate because biological replicates displayed overlapping taxonomic and functional composition. All in all, the results obtained confirmed that the application of shotgun metagenomic sequencing represents a powerful tool that can be used in the identification of both spoilage and pathogenic microorganism, and their resistome in foods of animal origin. However, a robust relationship between sequence read abundance and concentration of colony-forming unit must be still established.