957 resultados para semilinear partial differential equation
Resumo:
Chronicwounds fail to proceed through an orderly process to produce anatomic and functional integrity and are a significant socioeconomic problem. There is much debate about the best way to treat these wounds. In this thesis we review earlier mathematical models of angiogenesis and wound healing. Many of these models assume a chemotactic response of endothelial cells, the primary cell type involved in angiogenesis. Modelling this chemotactic response leads to a system of advection-dominated partial differential equations and we review numerical methods to solve these equations and argue that the finite volume method with flux limiting is best-suited to these problems. One treatment of chronic wounds that is shrouded with controversy is hyperbaric oxygen therapy (HBOT). There is currently no conclusive data showing that HBOT can assist chronic wound healing, but there has been some clinical success. In this thesis we use several mathematical models of wound healing to investigate the use of hyperbaric oxygen therapy to assist the healing process - a novel threespecies model and a more complex six-species model. The second model accounts formore of the biological phenomena but does not lend itself tomathematical analysis. Bothmodels are then used tomake predictions about the efficacy of hyperbaric oxygen therapy and the optimal treatment protocol. Based on our modelling, we are able to make several predictions including that intermittent HBOT will assist chronic wound healing while normobaric oxygen is ineffective in treating such wounds, treatment should continue until healing is complete and finding the right protocol for an individual patient is crucial if HBOT is to be effective. Analysis of the models allows us to derive constraints for the range of HBOT protocols that will stimulate healing, which enables us to predict which patients are more likely to have a positive response to HBOT and thus has the potential to assist in improving both the success rate and thus the cost-effectiveness of this therapy.
Resumo:
We present a spatiotemporal mathematical model of chlamydial infection, host immune response and spatial movement of infectious particles. The re- sulting partial differential equations model both the dynamics of the infection and changes in infection profile observed spatially along the length of the host genital tract. This model advances previous chlamydia modelling by incorporating spatial change, which we also demonstrate to be essential when the timescale for movement of infectious particles is equal to, or shorter than, the developmental cycle timescale. Numerical solutions and model analysis are carried out, and we present a hypothesis regarding the potential for treatment and prevention of infection by increasing chlamydial particle motility.
Resumo:
Recently, many new applications in engineering and science are governed by a series of fractional partial differential equations (FPDEs). Unlike the normal partial differential equations (PDEs), the differential order in a FPDE is with a fractional order, which will lead to new challenges for numerical simulation, because most existing numerical simulation techniques are developed for the PDE with an integer differential order. The current dominant numerical method for FPDEs is Finite Difference Method (FDM), which is usually difficult to handle a complex problem domain, and also hard to use irregular nodal distribution. This paper aims to develop an implicit meshless approach based on the moving least squares (MLS) approximation for numerical simulation of fractional advection-diffusion equations (FADE), which is a typical FPDE. The discrete system of equations is obtained by using the MLS meshless shape functions and the meshless strong-forms. The stability and convergence related to the time discretization of this approach are then discussed and theoretically proven. Several numerical examples with different problem domains and different nodal distributions are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling and simulation of the FADE.
Resumo:
Continuum, partial differential equation models are often used to describe the collective motion of cell populations, with various types of motility represented by the choice of diffusion coefficient, and cell proliferation captured by the source terms. Previously, the choice of diffusion coefficient has been largely arbitrary, with the decision to choose a particular linear or nonlinear form generally based on calibration arguments rather than making any physical connection with the underlying individual-level properties of the cell motility mechanism. In this work we provide a new link between individual-level models, which account for important cell properties such as varying cell shape and volume exclusion, and population-level partial differential equation models. We work in an exclusion process framework, considering aligned, elongated cells that may occupy more than one lattice site, in order to represent populations of agents with different sizes. Three different idealizations of the individual-level mechanism are proposed, and these are connected to three different partial differential equations, each with a different diffusion coefficient; one linear, one nonlinear and degenerate and one nonlinear and nondegenerate. We test the ability of these three models to predict the population level response of a cell spreading problem for both proliferative and nonproliferative cases. We also explore the potential of our models to predict long time travelling wave invasion rates and extend our results to two dimensional spreading and invasion. Our results show that each model can accurately predict density data for nonproliferative systems, but that only one does so for proliferative systems. Hence great care must be taken to predict density data for with varying cell shape.
Resumo:
The concept of local accumulation time (LAT) was introduced by Berezhkovskii and coworkers in 2010–2011 to give a finite measure of the time required for the transient solution of a reaction–diffusion equation to approach the steady–state solution (Biophys J. 99, L59 (2010); Phys Rev E. 83, 051906 (2011)). Such a measure is referred to as a critical time. Here, we show that LAT is, in fact, identical to the concept of mean action time (MAT) that was first introduced by McNabb in 1991 (IMA J Appl Math. 47, 193 (1991)). Although McNabb’s initial argument was motivated by considering the mean particle lifetime (MPLT) for a linear death process, he applied the ideas to study diffusion. We extend the work of these authors by deriving expressions for the MAT for a general one–dimensional linear advection–diffusion–reaction problem. Using a combination of continuum and discrete approaches, we show that MAT and MPLT are equivalent for certain uniform–to-uniform transitions; these results provide a practical interpretation for MAT, by directly linking the stochastic microscopic processes to a meaningful macroscopic timescale. We find that for more general transitions, the equivalence between MAT and MPLT does not hold. Unlike other critical time definitions, we show that it is possible to evaluate the MAT without solving the underlying partial differential equation (pde). This makes MAT a simple and attractive quantity for practical situations. Finally, our work explores the accuracy of certain approximations derived using the MAT, showing that useful approximations for nonlinear kinetic processes can be obtained, again without treating the governing pde directly.
Resumo:
In 2010 Berezhkovskii and coworkers introduced the concept of local accumulation time (LAT) as a finite measure of the time required for the transient solution of a reaction diffusion equation to effectively reach steady state(Biophys J. 99, L59 (2010); Phys Rev E. 83, 051906 (2011)). Berezhkovskii’s approach is a particular application of the concept of mean action time (MAT) that was introduced previously by McNabb (IMA J Appl Math. 47, 193 (1991)). Here, we generalize these previous results by presenting a framework to calculate the MAT, as well as the higher moments, which we call the moments of action. The second moment is the variance of action time; the third moment is related to the skew of action time, and so on. We consider a general transition from some initial condition to an associated steady state for a one–dimensional linear advection–diffusion–reaction partial differential equation(PDE). Our results indicate that it is possible to solve for the moments of action exactly without requiring the transient solution of the PDE. We present specific examples that highlight potential weaknesses of previous studies that have considered the MAT alone without considering higher moments. Finally, we also provide a meaningful interpretation of the moments of action by presenting simulation results from a discrete random walk model together with some analysis of the particle lifetime distribution. This work shows that the moments of action are identical to the moments of the particle lifetime distribution for certain transitions.
Resumo:
Moving fronts of cells are essential features of embryonic development, wound repair and cancer metastasis. This paper describes a set of experiments to investigate the roles of random motility and proliferation in driving the spread of an initially confined cell population. The experiments include an analysis of cell spreading when proliferation was inhibited. Our data have been analysed using two mathematical models: a lattice-based discrete model and a related continuum partial differential equation model. We obtain independent estimates of the random motility parameter, D, and the intrinsic proliferation rate, λ, and we confirm that these estimates lead to accurate modelling predictions of the position of the leading edge of the moving front as well as the evolution of the cell density profiles. Previous work suggests that systems with a high λ/D ratio will be characterized by steep fronts, whereas systems with a low λ/D ratio will lead to shallow diffuse fronts and this is confirmed in the present study. Our results provide evidence that continuum models, based on the Fisher–Kolmogorov equation, are a reliable platform upon which we can interpret and predict such experimental observations.
Resumo:
Biological systems involving proliferation, migration and death are observed across all scales. For example, they govern cellular processes such as wound-healing, as well as the population dynamics of groups of organisms. In this paper, we provide a simplified method for correcting mean-field approximations of volume-excluding birth-death-movement processes on a regular lattice. An initially uniform distribution of agents on the lattice may give rise to spatial heterogeneity, depending on the relative rates of proliferation, migration and death. Many frameworks chosen to model these systems neglect spatial correlations, which can lead to inaccurate predictions of their behaviour. For example, the logistic model is frequently chosen, which is the mean-field approximation in this case. This mean-field description can be corrected by including a system of ordinary differential equations for pair-wise correlations between lattice site occupancies at various lattice distances. In this work we discuss difficulties with this method and provide a simplication, in the form of a partial differential equation description for the evolution of pair-wise spatial correlations over time. We test our simplified model against the more complex corrected mean-field model, finding excellent agreement. We show how our model successfully predicts system behaviour in regions where the mean-field approximation shows large discrepancies. Additionally, we investigate regions of parameter space where migration is reduced relative to proliferation, which has not been examined in detail before, and our method is successful at correcting the deviations observed in the mean-field model in these parameter regimes.
Resumo:
In a recent paper, Gordon, Muratov, and Shvartsman studied a partial differential equation (PDE) model describing radially symmetric diffusion and degradation in two and three dimensions. They paid particular attention to the local accumulation time (LAT), also known in the literature as the mean action time, which is a spatially dependent timescale that can be used to provide an estimate of the time required for the transient solution to effectively reach steady state. They presented exact results for three-dimensional applications and gave approximate results for the two-dimensional analogue. Here we make two generalizations of Gordon, Muratov, and Shvartsman’s work: (i) we present an exact expression for the LAT in any dimension and (ii) we present an exact expression for the variance of the distribution. The variance provides useful information regarding the spread about the mean that is not captured by the LAT. We conclude by describing further extensions of the model that were not considered by Gordon,Muratov, and Shvartsman. We have found that exact expressions for the LAT can also be derived for these important extensions...
Resumo:
We consider a model for thin film flow down the outside and inside of a vertical cylinder. Our focus is to study the effect that the curvature of the cylinder has on the gravity-driven instability of the advancing contact line and to simulate the resulting fingering patterns that form due to this instability. The governing partial differential equation is fourth order with a nonlinear degenerate diffusion term that represents the stabilising effect of surface tension. We present numerical solutions obtained by implementing an efficient alternating direction implicit scheme. When compared to the problem of flow down a vertical plane, we find that increasing substrate curvature tends to increase the fingering instability for flow down the outside of the cylinder, whereas flow down the inside of the cylinder substrate curvature has the opposite effect. Further, we demonstrate the existence of nontrivial travelling wave solutions which describe fingering patterns that propagate down the inside of a cylinder at constant speed without changing form. These solutions are perfectly analogous to those found previously for thin film flow down an inclined plane.
Resumo:
In biology, we frequently observe different species existing within the same environment. For example, there are many cell types in a tumour, or different animal species may occupy a given habitat. In modelling interactions between such species, we often make use of the mean field approximation, whereby spatial correlations between the locations of individuals are neglected. Whilst this approximation holds in certain situations, this is not always the case, and care must be taken to ensure the mean field approximation is only used in appropriate settings. In circumstances where the mean field approximation is unsuitable we need to include information on the spatial distributions of individuals, which is not a simple task. In this paper we provide a method that overcomes many of the failures of the mean field approximation for an on-lattice volume-excluding birth-death-movement process with multiple species. We explicitly take into account spatial information on the distribution of individuals by including partial differential equation descriptions of lattice site occupancy correlations. We demonstrate how to derive these equations for the multi-species case, and show results specific to a two-species problem. We compare averaged discrete results to both the mean field approximation and our improved method which incorporates spatial correlations. We note that the mean field approximation fails dramatically in some cases, predicting very different behaviour from that seen upon averaging multiple realisations of the discrete system. In contrast, our improved method provides excellent agreement with the averaged discrete behaviour in all cases, thus providing a more reliable modelling framework. Furthermore, our method is tractable as the resulting partial differential equations can be solved efficiently using standard numerical techniques.
Resumo:
An investigation of the drying of spherical food particles was performed, using peas as the model material. In the development of a mathematical model for drying curves, moisture diffusion was modelled using Fick’s second law for mass transfer. The resulting partial differential equation was solved using a forward-time central-space finite difference approximation, with the assumption of variable effective diffusivity. In order to test the model, experimental data was collected for the drying of green peas in a fluidised bed at three drying temperatures. Through fitting three equation types for effective diffusivity to the data, it was found that a linear equation form, in which diffusivity increased with decreasing moisture content, was most appropriate. The final model accurately described the drying curves of the three experimental temperatures, with an R2 value greater than 98.6% for all temperatures.
Resumo:
Cell-to-cell adhesion is an important aspect of malignant spreading that is often observed in images from the experimental cell biology literature. Since cell-to-cell adhesion plays an important role in controlling the movement of individual malignant cells, it is likely that cell-to-cell adhesion also influences the spatial spreading of populations of such cells. Therefore, it is important for us to develop biologically realistic simulation tools that can mimic the key features of such collective spreading processes to improve our understanding of how cell-to-cell adhesion influences the spreading of cell populations. Previous models of collective cell spreading with adhesion have used lattice-based random walk frameworks which may lead to unrealistic results, since the agents in the random walk simulations always move across an artificial underlying lattice structure. This is particularly problematic in high-density regions where it is clear that agents in the random walk align along the underlying lattice, whereas no such regular alignment is ever observed experimentally. To address these limitations, we present a lattice-free model of collective cell migration that explicitly incorporates crowding and adhesion. We derive a partial differential equation description of the discrete process and show that averaged simulation results compare very well with numerical solutions of the partial differential equation.